Sodium Hydrosulfide Modification of Mesenchymal Stem Cell-Exosomes Improves Liver Function in CCL4-Induced Hepatic Injury in Mice

Liver diseases and injuries are important medical problems worldwide. Acute liver failure (ALF) is a clinical syndrome characterized by severe functional impairment and widespread death of hepatocytes. Liver transplantation is the only treatment available so far. Exosomes are nanovesicles originatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reports of biochemistry and molecular biology 2023-01, Vol.11 (4), p.644-655
Hauptverfasser: Jafar Sameri, Maryam, Belali, Rafeie, Neisi, Niloofar, Noei Razliqi, Reza, Mard, Seyed Ali, Savari, Feryal, Azandeh, Seyyed Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liver diseases and injuries are important medical problems worldwide. Acute liver failure (ALF) is a clinical syndrome characterized by severe functional impairment and widespread death of hepatocytes. Liver transplantation is the only treatment available so far. Exosomes are nanovesicles originating from intracellular organelles. They regulate the cellular and molecular mechanisms of their recipient cells and have promising potential for clinical application in acute and chronic liver injuries. This study compares the effect of Sodium hydrosulfide (NaHS) modified exosomes with non-modified exosomes in CCL4-induced acute liver injury to ascertain their role in ameliorating hepatic injury. Human Mesenchymal stem cells (MSCs) were treated with or without NaHS (1 μmol) and exosomes were isolated using an exosome isolation kit. Male mice (8-12 weeks old) were randomly divided into four groups (n=6): 1-control, 2-PBS, 3- MSC-Exo, and 4- H2S-Exo. Animals received 2.8 ml/kg body weight of CCL4 solution intraperitoneally, and 24 h later MSC-Exo (non-modified), H2S-Exo (NaHS-modified), or PBS, was injected in the tail vein. Moreover, 24 h after Exo administration, mice were sacrificed for tissue and blood collection. Administration of both MSC-Exo and H2S-Exo reduced inflammatory cytokines (IL-6, TNF-α), total oxidant levels, liver aminotransferases, and cellular apoptosis. MSC-Exo and H2S-Exo had hepato-protective effects against CCL4-induced liver injury in mice. Modification of cell culture medium with NaHS as an H2S donor enhances the therapeutic effects of MSC exosomes.
ISSN:2322-3480
2322-3480
DOI:10.52547/rbmb.11.4.644