Differential changes in cyclic adenosine 3′‐5′ monophosphate (cAMP) effectors and major Ca2+ handling proteins during diabetic cardiomyopathy
Diabetic cardiomyopathy (DCM) is associated with differential and time‐specific regulation of β‐adrenergic receptors and cardiac cyclic nucleotide phosphodiesterases with consequences for total cyclic adenosine 3′‐5′ monophosphate (cAMP) levels. We aimed to investigate whether these changes are asso...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2023-05, Vol.27 (9), p.1277-1289 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1289 |
---|---|
container_issue | 9 |
container_start_page | 1277 |
container_title | Journal of cellular and molecular medicine |
container_volume | 27 |
creator | Chaoul, Victoria Hanna, Rita Hachem, Pia El Hayek, Magali Samia Nour‐Eldine, Wared Abou‐Khalil, Pamela Abi‐Ramia, Elias Vandecasteele, Grégoire Abi‐Gerges, Aniella |
description | Diabetic cardiomyopathy (DCM) is associated with differential and time‐specific regulation of β‐adrenergic receptors and cardiac cyclic nucleotide phosphodiesterases with consequences for total cyclic adenosine 3′‐5′ monophosphate (cAMP) levels. We aimed to investigate whether these changes are associated with downstream impairments in cAMP and Ca2+ signalling in a type 1 diabetes (T1D)‐induced DCM model. T1D was induced in adult male rats by streptozotocin (65 mg/kg) injection. DCM was assessed by cardiac structural and molecular remodelling. We delineated sequential changes affecting the exchange protein (Epac1/2), cAMP‐dependent protein kinase A (PKA) and Ca2+/Calmodulin‐dependent kinase II (CaMKII) at 4, 8 and 12 weeks following diabetes, by real‐time quantitative PCR and western blot. Expression of Ca2+ ATPase pump (SERCA2a), phospholamban (PLB) and Troponin I (TnI) was also examined. Early upregulation of Epac1 transcripts was noted in diabetic hearts at Week 4, followed by increases in Epac2 mRNA, but not protein levels, at Week 12. Expression of PKA subunits (RI, RIIα and Cα) remained unchanged regardless of the disease stage, whereas CaMKII increased at Week 12 in DCM. Moreover, PLB transcripts were upregulated in diabetic hearts, whereas SERCA2a and TnI gene expression was unchanged irrespective of the disease evolution. PLB phosphorylation at threonine‐17 was increased in DCM, whereas phosphorylation of both PLB at serine‐16 and TnI at serine‐23/24 was unchanged. We show for the first time differential and time‐specific regulations in cardiac cAMP effectors and Ca2+ handling proteins, data that may prove useful in proposing new therapeutic approaches in T1D‐induced DCM. |
doi_str_mv | 10.1111/jcmm.17733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10148055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791708859</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2803-3129ca4b32e2fc44241a293b7d8b4750725aeb78bfe4ebfe9568b5e34de7cb153</originalsourceid><addsrcrecordid>eNpdkctu1DAUhi1ERcvAhiewxKaomuJbxs4KVUOhRR3BAtaW45xMPErsYCeg7PoISLwJj9QnqacdIcFZnIv867OPf4ReUXJOc7zd2b4_p1Jy_gSd0EKxpSi5eHroqeLqGD1PaUcIX1FePkPHfFWupCTyBP1-75oGIvjRmQ7b1vgtJOw8trPtnMWmBh-S84D53e2fu9tfRS64Dz4MbUhDa0bAp_Zi8-UNhgyyY4gJG1_j3uxCxGvDznCG1p3zWzzEMILzCddT3M-1MxWM-RZrYu1CP4fBjO38Ah01pkvw8lAX6NuHy6_rq-XN54_X64ub5cAU4UtOWWmNqDgD1lghmKCGlbyStaqELIhkhYFKqqoBATmVxUpVBXBRg7QVLfgCvXvkDlPVQ23zJ0TT6SG63sRZB-P0vyfetXobfmhKqFCk2BNOD4QYvk-QRt27ZKHrjIcwJc1kSSVRqiiz9PV_0l2Yos_76byNZJLyHAtEH1U_XQfz36dQovdO673T-sFp_Wm92Tx0_B5Nk6Iy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807271333</pqid></control><display><type>article</type><title>Differential changes in cyclic adenosine 3′‐5′ monophosphate (cAMP) effectors and major Ca2+ handling proteins during diabetic cardiomyopathy</title><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Chaoul, Victoria ; Hanna, Rita ; Hachem, Pia ; El Hayek, Magali Samia ; Nour‐Eldine, Wared ; Abou‐Khalil, Pamela ; Abi‐Ramia, Elias ; Vandecasteele, Grégoire ; Abi‐Gerges, Aniella</creator><creatorcontrib>Chaoul, Victoria ; Hanna, Rita ; Hachem, Pia ; El Hayek, Magali Samia ; Nour‐Eldine, Wared ; Abou‐Khalil, Pamela ; Abi‐Ramia, Elias ; Vandecasteele, Grégoire ; Abi‐Gerges, Aniella</creatorcontrib><description>Diabetic cardiomyopathy (DCM) is associated with differential and time‐specific regulation of β‐adrenergic receptors and cardiac cyclic nucleotide phosphodiesterases with consequences for total cyclic adenosine 3′‐5′ monophosphate (cAMP) levels. We aimed to investigate whether these changes are associated with downstream impairments in cAMP and Ca2+ signalling in a type 1 diabetes (T1D)‐induced DCM model. T1D was induced in adult male rats by streptozotocin (65 mg/kg) injection. DCM was assessed by cardiac structural and molecular remodelling. We delineated sequential changes affecting the exchange protein (Epac1/2), cAMP‐dependent protein kinase A (PKA) and Ca2+/Calmodulin‐dependent kinase II (CaMKII) at 4, 8 and 12 weeks following diabetes, by real‐time quantitative PCR and western blot. Expression of Ca2+ ATPase pump (SERCA2a), phospholamban (PLB) and Troponin I (TnI) was also examined. Early upregulation of Epac1 transcripts was noted in diabetic hearts at Week 4, followed by increases in Epac2 mRNA, but not protein levels, at Week 12. Expression of PKA subunits (RI, RIIα and Cα) remained unchanged regardless of the disease stage, whereas CaMKII increased at Week 12 in DCM. Moreover, PLB transcripts were upregulated in diabetic hearts, whereas SERCA2a and TnI gene expression was unchanged irrespective of the disease evolution. PLB phosphorylation at threonine‐17 was increased in DCM, whereas phosphorylation of both PLB at serine‐16 and TnI at serine‐23/24 was unchanged. We show for the first time differential and time‐specific regulations in cardiac cAMP effectors and Ca2+ handling proteins, data that may prove useful in proposing new therapeutic approaches in T1D‐induced DCM.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.17733</identifier><identifier>PMID: 36967707</identifier><language>eng</language><publisher>Chichester: John Wiley & Sons, Inc</publisher><subject>3',5'-Cyclic-nucleotide phosphodiesterase ; Adenosine ; Adrenergic receptors ; Antibodies ; Ca2+-transporting ATPase ; Ca2+/calmodulin-dependent protein kinase II ; Ca2+/calmodulin‐dependent kinase II ; Calcium signalling ; Calmodulin ; cAMP‐dependent protein kinase ; Cardiac function ; Cardiomyopathy ; Cyclic AMP ; Diabetes ; Diabetes mellitus (insulin dependent) ; diabetic cardiomyopathy ; exchange protein directly activated by cAMP ; excitation–contraction coupling ; Fasting ; Fluorides ; Gene expression ; Genes ; Heart ; Kinases ; Laboratory animals ; Original ; Phospholamban ; Phosphorylation ; Protein kinase A ; Proteins ; Serine ; Streptozocin ; Threonine ; Tni gene ; Troponin I ; type 1 diabetes</subject><ispartof>Journal of cellular and molecular medicine, 2023-05, Vol.27 (9), p.1277-1289</ispartof><rights>2023 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7605-6989 ; 0000-0001-9974-4023 ; 0000-0002-4046-4171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148055/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148055/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids></links><search><creatorcontrib>Chaoul, Victoria</creatorcontrib><creatorcontrib>Hanna, Rita</creatorcontrib><creatorcontrib>Hachem, Pia</creatorcontrib><creatorcontrib>El Hayek, Magali Samia</creatorcontrib><creatorcontrib>Nour‐Eldine, Wared</creatorcontrib><creatorcontrib>Abou‐Khalil, Pamela</creatorcontrib><creatorcontrib>Abi‐Ramia, Elias</creatorcontrib><creatorcontrib>Vandecasteele, Grégoire</creatorcontrib><creatorcontrib>Abi‐Gerges, Aniella</creatorcontrib><title>Differential changes in cyclic adenosine 3′‐5′ monophosphate (cAMP) effectors and major Ca2+ handling proteins during diabetic cardiomyopathy</title><title>Journal of cellular and molecular medicine</title><description>Diabetic cardiomyopathy (DCM) is associated with differential and time‐specific regulation of β‐adrenergic receptors and cardiac cyclic nucleotide phosphodiesterases with consequences for total cyclic adenosine 3′‐5′ monophosphate (cAMP) levels. We aimed to investigate whether these changes are associated with downstream impairments in cAMP and Ca2+ signalling in a type 1 diabetes (T1D)‐induced DCM model. T1D was induced in adult male rats by streptozotocin (65 mg/kg) injection. DCM was assessed by cardiac structural and molecular remodelling. We delineated sequential changes affecting the exchange protein (Epac1/2), cAMP‐dependent protein kinase A (PKA) and Ca2+/Calmodulin‐dependent kinase II (CaMKII) at 4, 8 and 12 weeks following diabetes, by real‐time quantitative PCR and western blot. Expression of Ca2+ ATPase pump (SERCA2a), phospholamban (PLB) and Troponin I (TnI) was also examined. Early upregulation of Epac1 transcripts was noted in diabetic hearts at Week 4, followed by increases in Epac2 mRNA, but not protein levels, at Week 12. Expression of PKA subunits (RI, RIIα and Cα) remained unchanged regardless of the disease stage, whereas CaMKII increased at Week 12 in DCM. Moreover, PLB transcripts were upregulated in diabetic hearts, whereas SERCA2a and TnI gene expression was unchanged irrespective of the disease evolution. PLB phosphorylation at threonine‐17 was increased in DCM, whereas phosphorylation of both PLB at serine‐16 and TnI at serine‐23/24 was unchanged. We show for the first time differential and time‐specific regulations in cardiac cAMP effectors and Ca2+ handling proteins, data that may prove useful in proposing new therapeutic approaches in T1D‐induced DCM.</description><subject>3',5'-Cyclic-nucleotide phosphodiesterase</subject><subject>Adenosine</subject><subject>Adrenergic receptors</subject><subject>Antibodies</subject><subject>Ca2+-transporting ATPase</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Ca2+/calmodulin‐dependent kinase II</subject><subject>Calcium signalling</subject><subject>Calmodulin</subject><subject>cAMP‐dependent protein kinase</subject><subject>Cardiac function</subject><subject>Cardiomyopathy</subject><subject>Cyclic AMP</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>diabetic cardiomyopathy</subject><subject>exchange protein directly activated by cAMP</subject><subject>excitation–contraction coupling</subject><subject>Fasting</subject><subject>Fluorides</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Heart</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Original</subject><subject>Phospholamban</subject><subject>Phosphorylation</subject><subject>Protein kinase A</subject><subject>Proteins</subject><subject>Serine</subject><subject>Streptozocin</subject><subject>Threonine</subject><subject>Tni gene</subject><subject>Troponin I</subject><subject>type 1 diabetes</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkctu1DAUhi1ERcvAhiewxKaomuJbxs4KVUOhRR3BAtaW45xMPErsYCeg7PoISLwJj9QnqacdIcFZnIv867OPf4ReUXJOc7zd2b4_p1Jy_gSd0EKxpSi5eHroqeLqGD1PaUcIX1FePkPHfFWupCTyBP1-75oGIvjRmQ7b1vgtJOw8trPtnMWmBh-S84D53e2fu9tfRS64Dz4MbUhDa0bAp_Zi8-UNhgyyY4gJG1_j3uxCxGvDznCG1p3zWzzEMILzCddT3M-1MxWM-RZrYu1CP4fBjO38Ah01pkvw8lAX6NuHy6_rq-XN54_X64ub5cAU4UtOWWmNqDgD1lghmKCGlbyStaqELIhkhYFKqqoBATmVxUpVBXBRg7QVLfgCvXvkDlPVQ23zJ0TT6SG63sRZB-P0vyfetXobfmhKqFCk2BNOD4QYvk-QRt27ZKHrjIcwJc1kSSVRqiiz9PV_0l2Yos_76byNZJLyHAtEH1U_XQfz36dQovdO673T-sFp_Wm92Tx0_B5Nk6Iy</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Chaoul, Victoria</creator><creator>Hanna, Rita</creator><creator>Hachem, Pia</creator><creator>El Hayek, Magali Samia</creator><creator>Nour‐Eldine, Wared</creator><creator>Abou‐Khalil, Pamela</creator><creator>Abi‐Ramia, Elias</creator><creator>Vandecasteele, Grégoire</creator><creator>Abi‐Gerges, Aniella</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7605-6989</orcidid><orcidid>https://orcid.org/0000-0001-9974-4023</orcidid><orcidid>https://orcid.org/0000-0002-4046-4171</orcidid></search><sort><creationdate>202305</creationdate><title>Differential changes in cyclic adenosine 3′‐5′ monophosphate (cAMP) effectors and major Ca2+ handling proteins during diabetic cardiomyopathy</title><author>Chaoul, Victoria ; Hanna, Rita ; Hachem, Pia ; El Hayek, Magali Samia ; Nour‐Eldine, Wared ; Abou‐Khalil, Pamela ; Abi‐Ramia, Elias ; Vandecasteele, Grégoire ; Abi‐Gerges, Aniella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2803-3129ca4b32e2fc44241a293b7d8b4750725aeb78bfe4ebfe9568b5e34de7cb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3',5'-Cyclic-nucleotide phosphodiesterase</topic><topic>Adenosine</topic><topic>Adrenergic receptors</topic><topic>Antibodies</topic><topic>Ca2+-transporting ATPase</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Ca2+/calmodulin‐dependent kinase II</topic><topic>Calcium signalling</topic><topic>Calmodulin</topic><topic>cAMP‐dependent protein kinase</topic><topic>Cardiac function</topic><topic>Cardiomyopathy</topic><topic>Cyclic AMP</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>diabetic cardiomyopathy</topic><topic>exchange protein directly activated by cAMP</topic><topic>excitation–contraction coupling</topic><topic>Fasting</topic><topic>Fluorides</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Heart</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Original</topic><topic>Phospholamban</topic><topic>Phosphorylation</topic><topic>Protein kinase A</topic><topic>Proteins</topic><topic>Serine</topic><topic>Streptozocin</topic><topic>Threonine</topic><topic>Tni gene</topic><topic>Troponin I</topic><topic>type 1 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaoul, Victoria</creatorcontrib><creatorcontrib>Hanna, Rita</creatorcontrib><creatorcontrib>Hachem, Pia</creatorcontrib><creatorcontrib>El Hayek, Magali Samia</creatorcontrib><creatorcontrib>Nour‐Eldine, Wared</creatorcontrib><creatorcontrib>Abou‐Khalil, Pamela</creatorcontrib><creatorcontrib>Abi‐Ramia, Elias</creatorcontrib><creatorcontrib>Vandecasteele, Grégoire</creatorcontrib><creatorcontrib>Abi‐Gerges, Aniella</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaoul, Victoria</au><au>Hanna, Rita</au><au>Hachem, Pia</au><au>El Hayek, Magali Samia</au><au>Nour‐Eldine, Wared</au><au>Abou‐Khalil, Pamela</au><au>Abi‐Ramia, Elias</au><au>Vandecasteele, Grégoire</au><au>Abi‐Gerges, Aniella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential changes in cyclic adenosine 3′‐5′ monophosphate (cAMP) effectors and major Ca2+ handling proteins during diabetic cardiomyopathy</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><date>2023-05</date><risdate>2023</risdate><volume>27</volume><issue>9</issue><spage>1277</spage><epage>1289</epage><pages>1277-1289</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Diabetic cardiomyopathy (DCM) is associated with differential and time‐specific regulation of β‐adrenergic receptors and cardiac cyclic nucleotide phosphodiesterases with consequences for total cyclic adenosine 3′‐5′ monophosphate (cAMP) levels. We aimed to investigate whether these changes are associated with downstream impairments in cAMP and Ca2+ signalling in a type 1 diabetes (T1D)‐induced DCM model. T1D was induced in adult male rats by streptozotocin (65 mg/kg) injection. DCM was assessed by cardiac structural and molecular remodelling. We delineated sequential changes affecting the exchange protein (Epac1/2), cAMP‐dependent protein kinase A (PKA) and Ca2+/Calmodulin‐dependent kinase II (CaMKII) at 4, 8 and 12 weeks following diabetes, by real‐time quantitative PCR and western blot. Expression of Ca2+ ATPase pump (SERCA2a), phospholamban (PLB) and Troponin I (TnI) was also examined. Early upregulation of Epac1 transcripts was noted in diabetic hearts at Week 4, followed by increases in Epac2 mRNA, but not protein levels, at Week 12. Expression of PKA subunits (RI, RIIα and Cα) remained unchanged regardless of the disease stage, whereas CaMKII increased at Week 12 in DCM. Moreover, PLB transcripts were upregulated in diabetic hearts, whereas SERCA2a and TnI gene expression was unchanged irrespective of the disease evolution. PLB phosphorylation at threonine‐17 was increased in DCM, whereas phosphorylation of both PLB at serine‐16 and TnI at serine‐23/24 was unchanged. We show for the first time differential and time‐specific regulations in cardiac cAMP effectors and Ca2+ handling proteins, data that may prove useful in proposing new therapeutic approaches in T1D‐induced DCM.</abstract><cop>Chichester</cop><pub>John Wiley & Sons, Inc</pub><pmid>36967707</pmid><doi>10.1111/jcmm.17733</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7605-6989</orcidid><orcidid>https://orcid.org/0000-0001-9974-4023</orcidid><orcidid>https://orcid.org/0000-0002-4046-4171</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2023-05, Vol.27 (9), p.1277-1289 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10148055 |
source | Wiley Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | 3',5'-Cyclic-nucleotide phosphodiesterase Adenosine Adrenergic receptors Antibodies Ca2+-transporting ATPase Ca2+/calmodulin-dependent protein kinase II Ca2+/calmodulin‐dependent kinase II Calcium signalling Calmodulin cAMP‐dependent protein kinase Cardiac function Cardiomyopathy Cyclic AMP Diabetes Diabetes mellitus (insulin dependent) diabetic cardiomyopathy exchange protein directly activated by cAMP excitation–contraction coupling Fasting Fluorides Gene expression Genes Heart Kinases Laboratory animals Original Phospholamban Phosphorylation Protein kinase A Proteins Serine Streptozocin Threonine Tni gene Troponin I type 1 diabetes |
title | Differential changes in cyclic adenosine 3′‐5′ monophosphate (cAMP) effectors and major Ca2+ handling proteins during diabetic cardiomyopathy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20changes%20in%20cyclic%20adenosine%203%E2%80%B2%E2%80%905%E2%80%B2%20monophosphate%20(cAMP)%20effectors%20and%20major%20Ca2+%20handling%20proteins%20during%20diabetic%20cardiomyopathy&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Chaoul,%20Victoria&rft.date=2023-05&rft.volume=27&rft.issue=9&rft.spage=1277&rft.epage=1289&rft.pages=1277-1289&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.17733&rft_dat=%3Cproquest_pubme%3E2791708859%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807271333&rft_id=info:pmid/36967707&rfr_iscdi=true |