Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing
The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential advantages to fabricate high-performance coatings with non-equilibrium structures. In this study, titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive IPIB irradia...
Gespeichert in:
Veröffentlicht in: | Materials 2023-04, Vol.16 (8), p.3028 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 3028 |
container_title | Materials |
container_volume | 16 |
creator | Xu, Mofei Yu, Xiang Zhang, Shijian Yan, Sha Tarbokov, Vladislav Remnev, Gennady Le, Xiaoyun |
description | The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential advantages to fabricate high-performance coatings with non-equilibrium structures. In this study, titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive IPIB irradiation, and the feasibility of IPIB melt mixing (IPIBMM) for a film-substrate system is verified via finite elements analysis. The experimental results reveal that the melting depth is 1.15 μm under IPIB irradiation, which is in close agreement with the calculation value (1.18 μm). The film and substrate form a Ti-Cr alloy coating by IPIBMM. The coating has a continuous gradient composition distribution, metallurgically bonding on the Ti substrate via IPIBMM. Increasing the IPIB pulse number leads to more complete element mixing and the elimination of surface cracks and craters. Additionally, the IPIB irradiation induces the formation of supersaturated solid solutions, lattice transition, and preferred orientation change, contributing to an increase in hardness and a decrease in elastic modulus with continuous irradiation. Notably, the coating treated with 20 pulses demonstrates a remarkable hardness (4.8 GPa), more than twice that of pure Ti, and a lower elastic modulus (100.3 GPa), 20% less than that of pure Ti. The analysis of the load-displacement curves and
-
ratios indicates that the Ti-Cr alloy coated samples exhibit better plasticity and wear resistance compared to pure Ti. Specifically, the coating formed after 20 pulses exhibits exceptional wear resistance, as demonstrated by its
/
value being 14 times higher than that of pure Ti. This development provides an efficient and eco-friendly method for designing robust-adhesion coatings with specific structures, which can be extended to various bi- or multi-element material systems. |
doi_str_mv | 10.3390/ma16083028 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10146960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747446250</galeid><sourcerecordid>A747446250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-6799515977f41f673c56d3fcd171a6a52ea69e97bc009f401e38ec786dd7fec93</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiMEolXphQdAlrggpBQ7Tuz4hNoVW1bqih7KOZp1JltXib3YTlVegydmVltKwZZsy_PNPzP2FMVbwc-kNPzTBELxVvKqfVEcC2NUKUxdv3x2PipOU7rjNKQUbWVeF0dSC25aJY-LX2tnY0g5zjbPEdkyxAmyC56B79ka7S14Z2Fk1zHsMGaHiYWBDBlShs2I7MZlQuapvICEPbuM0Dv0mS0C6fgtW8ImkkIm270DtvIZfUJ2PY-0rijQBcJEgmNma_dAHm-KVwOQ8fRxPym-L7_cLL6WV98uV4vzq9LWtcql0sY0ojFaD7UYlJa2Ub0cbC-0AAVNhaAMGr2xnJuh5gJli1a3qu_1gNbIk-LzQXc3bybsLSUdYex20U0Qf3YBXPevxbvbbhvuO8FFrYzipPDhUSGGHzOm3E0uWRxH8Bjm1FUt16aiX2oJff8fehfm6Km-PaUa3ba6IersQG1hxM75IVBgS7PHydngcXB0f65rTU9QNfsMPh4c9p-YIg5P6Qve7fuj-9sfBL97XvAT-qcb5G_Ja7cS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806578875</pqid></control><display><type>article</type><title>Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Mofei ; Yu, Xiang ; Zhang, Shijian ; Yan, Sha ; Tarbokov, Vladislav ; Remnev, Gennady ; Le, Xiaoyun</creator><creatorcontrib>Xu, Mofei ; Yu, Xiang ; Zhang, Shijian ; Yan, Sha ; Tarbokov, Vladislav ; Remnev, Gennady ; Le, Xiaoyun</creatorcontrib><description>The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential advantages to fabricate high-performance coatings with non-equilibrium structures. In this study, titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive IPIB irradiation, and the feasibility of IPIB melt mixing (IPIBMM) for a film-substrate system is verified via finite elements analysis. The experimental results reveal that the melting depth is 1.15 μm under IPIB irradiation, which is in close agreement with the calculation value (1.18 μm). The film and substrate form a Ti-Cr alloy coating by IPIBMM. The coating has a continuous gradient composition distribution, metallurgically bonding on the Ti substrate via IPIBMM. Increasing the IPIB pulse number leads to more complete element mixing and the elimination of surface cracks and craters. Additionally, the IPIB irradiation induces the formation of supersaturated solid solutions, lattice transition, and preferred orientation change, contributing to an increase in hardness and a decrease in elastic modulus with continuous irradiation. Notably, the coating treated with 20 pulses demonstrates a remarkable hardness (4.8 GPa), more than twice that of pure Ti, and a lower elastic modulus (100.3 GPa), 20% less than that of pure Ti. The analysis of the load-displacement curves and
-
ratios indicates that the Ti-Cr alloy coated samples exhibit better plasticity and wear resistance compared to pure Ti. Specifically, the coating formed after 20 pulses exhibits exceptional wear resistance, as demonstrated by its
/
value being 14 times higher than that of pure Ti. This development provides an efficient and eco-friendly method for designing robust-adhesion coatings with specific structures, which can be extended to various bi- or multi-element material systems.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16083028</identifier><identifier>PMID: 37109863</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Chromium ; Chromium base alloys ; Coatings ; Continuous coating ; Corrosion resistance ; Energy ; Finite element method ; Hardness ; Investigations ; Ion beams ; Irradiation ; Magnetron sputtering ; Mathematical analysis ; Mechanical properties ; Modulus of elasticity ; Morphology ; Preferred orientation ; Scanning electron microscopy ; Solid solutions ; Substrates ; Surface cracks ; Titanium ; Titanium base alloys ; Wear resistance</subject><ispartof>Materials, 2023-04, Vol.16 (8), p.3028</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-6799515977f41f673c56d3fcd171a6a52ea69e97bc009f401e38ec786dd7fec93</citedby><cites>FETCH-LOGICAL-c446t-6799515977f41f673c56d3fcd171a6a52ea69e97bc009f401e38ec786dd7fec93</cites><orcidid>0000-0001-9366-5965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146960/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146960/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37109863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Mofei</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Zhang, Shijian</creatorcontrib><creatorcontrib>Yan, Sha</creatorcontrib><creatorcontrib>Tarbokov, Vladislav</creatorcontrib><creatorcontrib>Remnev, Gennady</creatorcontrib><creatorcontrib>Le, Xiaoyun</creatorcontrib><title>Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential advantages to fabricate high-performance coatings with non-equilibrium structures. In this study, titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive IPIB irradiation, and the feasibility of IPIB melt mixing (IPIBMM) for a film-substrate system is verified via finite elements analysis. The experimental results reveal that the melting depth is 1.15 μm under IPIB irradiation, which is in close agreement with the calculation value (1.18 μm). The film and substrate form a Ti-Cr alloy coating by IPIBMM. The coating has a continuous gradient composition distribution, metallurgically bonding on the Ti substrate via IPIBMM. Increasing the IPIB pulse number leads to more complete element mixing and the elimination of surface cracks and craters. Additionally, the IPIB irradiation induces the formation of supersaturated solid solutions, lattice transition, and preferred orientation change, contributing to an increase in hardness and a decrease in elastic modulus with continuous irradiation. Notably, the coating treated with 20 pulses demonstrates a remarkable hardness (4.8 GPa), more than twice that of pure Ti, and a lower elastic modulus (100.3 GPa), 20% less than that of pure Ti. The analysis of the load-displacement curves and
-
ratios indicates that the Ti-Cr alloy coated samples exhibit better plasticity and wear resistance compared to pure Ti. Specifically, the coating formed after 20 pulses exhibits exceptional wear resistance, as demonstrated by its
/
value being 14 times higher than that of pure Ti. This development provides an efficient and eco-friendly method for designing robust-adhesion coatings with specific structures, which can be extended to various bi- or multi-element material systems.</description><subject>Analysis</subject><subject>Chromium</subject><subject>Chromium base alloys</subject><subject>Coatings</subject><subject>Continuous coating</subject><subject>Corrosion resistance</subject><subject>Energy</subject><subject>Finite element method</subject><subject>Hardness</subject><subject>Investigations</subject><subject>Ion beams</subject><subject>Irradiation</subject><subject>Magnetron sputtering</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Preferred orientation</subject><subject>Scanning electron microscopy</subject><subject>Solid solutions</subject><subject>Substrates</subject><subject>Surface cracks</subject><subject>Titanium</subject><subject>Titanium base alloys</subject><subject>Wear resistance</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdksFu1DAQhiMEolXphQdAlrggpBQ7Tuz4hNoVW1bqih7KOZp1JltXib3YTlVegydmVltKwZZsy_PNPzP2FMVbwc-kNPzTBELxVvKqfVEcC2NUKUxdv3x2PipOU7rjNKQUbWVeF0dSC25aJY-LX2tnY0g5zjbPEdkyxAmyC56B79ka7S14Z2Fk1zHsMGaHiYWBDBlShs2I7MZlQuapvICEPbuM0Dv0mS0C6fgtW8ImkkIm270DtvIZfUJ2PY-0rijQBcJEgmNma_dAHm-KVwOQ8fRxPym-L7_cLL6WV98uV4vzq9LWtcql0sY0ojFaD7UYlJa2Ub0cbC-0AAVNhaAMGr2xnJuh5gJli1a3qu_1gNbIk-LzQXc3bybsLSUdYex20U0Qf3YBXPevxbvbbhvuO8FFrYzipPDhUSGGHzOm3E0uWRxH8Bjm1FUt16aiX2oJff8fehfm6Km-PaUa3ba6IersQG1hxM75IVBgS7PHydngcXB0f65rTU9QNfsMPh4c9p-YIg5P6Qve7fuj-9sfBL97XvAT-qcb5G_Ja7cS</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Xu, Mofei</creator><creator>Yu, Xiang</creator><creator>Zhang, Shijian</creator><creator>Yan, Sha</creator><creator>Tarbokov, Vladislav</creator><creator>Remnev, Gennady</creator><creator>Le, Xiaoyun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9366-5965</orcidid></search><sort><creationdate>20230411</creationdate><title>Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing</title><author>Xu, Mofei ; Yu, Xiang ; Zhang, Shijian ; Yan, Sha ; Tarbokov, Vladislav ; Remnev, Gennady ; Le, Xiaoyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-6799515977f41f673c56d3fcd171a6a52ea69e97bc009f401e38ec786dd7fec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Chromium</topic><topic>Chromium base alloys</topic><topic>Coatings</topic><topic>Continuous coating</topic><topic>Corrosion resistance</topic><topic>Energy</topic><topic>Finite element method</topic><topic>Hardness</topic><topic>Investigations</topic><topic>Ion beams</topic><topic>Irradiation</topic><topic>Magnetron sputtering</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Preferred orientation</topic><topic>Scanning electron microscopy</topic><topic>Solid solutions</topic><topic>Substrates</topic><topic>Surface cracks</topic><topic>Titanium</topic><topic>Titanium base alloys</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mofei</creatorcontrib><creatorcontrib>Yu, Xiang</creatorcontrib><creatorcontrib>Zhang, Shijian</creatorcontrib><creatorcontrib>Yan, Sha</creatorcontrib><creatorcontrib>Tarbokov, Vladislav</creatorcontrib><creatorcontrib>Remnev, Gennady</creatorcontrib><creatorcontrib>Le, Xiaoyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mofei</au><au>Yu, Xiang</au><au>Zhang, Shijian</au><au>Yan, Sha</au><au>Tarbokov, Vladislav</au><au>Remnev, Gennady</au><au>Le, Xiaoyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>16</volume><issue>8</issue><spage>3028</spage><pages>3028-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential advantages to fabricate high-performance coatings with non-equilibrium structures. In this study, titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive IPIB irradiation, and the feasibility of IPIB melt mixing (IPIBMM) for a film-substrate system is verified via finite elements analysis. The experimental results reveal that the melting depth is 1.15 μm under IPIB irradiation, which is in close agreement with the calculation value (1.18 μm). The film and substrate form a Ti-Cr alloy coating by IPIBMM. The coating has a continuous gradient composition distribution, metallurgically bonding on the Ti substrate via IPIBMM. Increasing the IPIB pulse number leads to more complete element mixing and the elimination of surface cracks and craters. Additionally, the IPIB irradiation induces the formation of supersaturated solid solutions, lattice transition, and preferred orientation change, contributing to an increase in hardness and a decrease in elastic modulus with continuous irradiation. Notably, the coating treated with 20 pulses demonstrates a remarkable hardness (4.8 GPa), more than twice that of pure Ti, and a lower elastic modulus (100.3 GPa), 20% less than that of pure Ti. The analysis of the load-displacement curves and
-
ratios indicates that the Ti-Cr alloy coated samples exhibit better plasticity and wear resistance compared to pure Ti. Specifically, the coating formed after 20 pulses exhibits exceptional wear resistance, as demonstrated by its
/
value being 14 times higher than that of pure Ti. This development provides an efficient and eco-friendly method for designing robust-adhesion coatings with specific structures, which can be extended to various bi- or multi-element material systems.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37109863</pmid><doi>10.3390/ma16083028</doi><orcidid>https://orcid.org/0000-0001-9366-5965</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-04, Vol.16 (8), p.3028 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10146960 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Chromium Chromium base alloys Coatings Continuous coating Corrosion resistance Energy Finite element method Hardness Investigations Ion beams Irradiation Magnetron sputtering Mathematical analysis Mechanical properties Modulus of elasticity Morphology Preferred orientation Scanning electron microscopy Solid solutions Substrates Surface cracks Titanium Titanium base alloys Wear resistance |
title | Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20Formation%20and%20Mechanical%20Properties%20of%20Metastable%20Titanium-Based%20Gradient%20Coating%20Fabricated%20via%20Intense%20Pulse%20Ion%20Beam%20Melt%20Mixing&rft.jtitle=Materials&rft.au=Xu,%20Mofei&rft.date=2023-04-11&rft.volume=16&rft.issue=8&rft.spage=3028&rft.pages=3028-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16083028&rft_dat=%3Cgale_pubme%3EA747446250%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806578875&rft_id=info:pmid/37109863&rft_galeid=A747446250&rfr_iscdi=true |