Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation
Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2023-04, Vol.43 (17), p.3042-3060 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3060 |
---|---|
container_issue | 17 |
container_start_page | 3042 |
container_title | The Journal of neuroscience |
container_volume | 43 |
creator | Eichler, Amelie Kleidonas, Dimitrios Turi, Zsolt Fliegauf, Maximilian Kirsch, Matthias Pfeifer, Dietmar Masuda, Takahiro Prinz, Marco Lenz, Maximilian Vlachos, Andreas |
description | Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings,
depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions. |
doi_str_mv | 10.1523/jneurosci.2226-22.2023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10146500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792513291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6067b1615289ed393a842bee608a51c0d8b8875a9abb5bb684a14c37b0fe72e83</originalsourceid><addsrcrecordid>eNpdUV1vEzEQtBCIhsJfqCzxwsuFte_8cU8IRYUGNRS1VOLNsn2b4HA5h7OvUvj1OGqpgJfdlXZ2NLNDyBmDORO8frsdcBpj8mHOOZcV53MOvH5CZmXbVrwB9pTMgCuoZKOaE_IipS0AKGDqOTmpZauU0HJGvq2CH-OmD7ani0OOP8KAia6wCzYj_dLblIMP-UCXQzd57Kg7UAb04he9xj3mkMMd0pXdDGX29CaH3dTbHOLwkjxb2z7hq4d-Sm4_nH9dXFSXVx-Xi_eXlRfQ5kqCVI7Jolq32NVtbXXDHaIEbQXz0GmntRK2tc4J56RuLGt8rRysUXHU9Sl5d8-7n9wOO49DHm1v9mPY2fFgog3m380QvptNvDMMWCMFQGF488Awxp8Tpmx2IXnseztgnJLhquWC1bxlBfr6P-g2TuNQ_BmuQQqhQLYFJe9R5bMpjbh-VMPAHNMznz6f315f3SyW5pheKeaYXjk8-9vL49mfuOrfIamYMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806557069</pqid></control><display><type>article</type><title>Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Eichler, Amelie ; Kleidonas, Dimitrios ; Turi, Zsolt ; Fliegauf, Maximilian ; Kirsch, Matthias ; Pfeifer, Dietmar ; Masuda, Takahiro ; Prinz, Marco ; Lenz, Maximilian ; Vlachos, Andreas</creator><creatorcontrib>Eichler, Amelie ; Kleidonas, Dimitrios ; Turi, Zsolt ; Fliegauf, Maximilian ; Kirsch, Matthias ; Pfeifer, Dietmar ; Masuda, Takahiro ; Prinz, Marco ; Lenz, Maximilian ; Vlachos, Andreas</creatorcontrib><description>Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings,
depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.2226-22.2023</identifier><identifier>PMID: 36977586</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animal tissues ; Animals ; Brain ; Cytokines ; Excitability ; Female ; Immune system ; Interleukin 6 ; Magnetic fields ; Magnetic Phenomena ; Male ; Mice ; Microglia ; Neuronal Plasticity - physiology ; Neuroplasticity ; Neurotransmission ; Plasticity ; Synaptic plasticity ; Transcranial magnetic stimulation ; Transcranial Magnetic Stimulation - methods ; Tumor necrosis factor-α</subject><ispartof>The Journal of neuroscience, 2023-04, Vol.43 (17), p.3042-3060</ispartof><rights>Copyright © 2023 Eichler et al.</rights><rights>Copyright Society for Neuroscience Apr 26, 2023</rights><rights>Copyright © 2023 Eichler et al. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6067b1615289ed393a842bee608a51c0d8b8875a9abb5bb684a14c37b0fe72e83</citedby><cites>FETCH-LOGICAL-c509t-6067b1615289ed393a842bee608a51c0d8b8875a9abb5bb684a14c37b0fe72e83</cites><orcidid>0000-0002-4533-4341 ; 0000-0002-3787-0427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146500/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146500/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36977586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eichler, Amelie</creatorcontrib><creatorcontrib>Kleidonas, Dimitrios</creatorcontrib><creatorcontrib>Turi, Zsolt</creatorcontrib><creatorcontrib>Fliegauf, Maximilian</creatorcontrib><creatorcontrib>Kirsch, Matthias</creatorcontrib><creatorcontrib>Pfeifer, Dietmar</creatorcontrib><creatorcontrib>Masuda, Takahiro</creatorcontrib><creatorcontrib>Prinz, Marco</creatorcontrib><creatorcontrib>Lenz, Maximilian</creatorcontrib><creatorcontrib>Vlachos, Andreas</creatorcontrib><title>Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings,
depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions.</description><subject>Animal tissues</subject><subject>Animals</subject><subject>Brain</subject><subject>Cytokines</subject><subject>Excitability</subject><subject>Female</subject><subject>Immune system</subject><subject>Interleukin 6</subject><subject>Magnetic fields</subject><subject>Magnetic Phenomena</subject><subject>Male</subject><subject>Mice</subject><subject>Microglia</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuroplasticity</subject><subject>Neurotransmission</subject><subject>Plasticity</subject><subject>Synaptic plasticity</subject><subject>Transcranial magnetic stimulation</subject><subject>Transcranial Magnetic Stimulation - methods</subject><subject>Tumor necrosis factor-α</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUV1vEzEQtBCIhsJfqCzxwsuFte_8cU8IRYUGNRS1VOLNsn2b4HA5h7OvUvj1OGqpgJfdlXZ2NLNDyBmDORO8frsdcBpj8mHOOZcV53MOvH5CZmXbVrwB9pTMgCuoZKOaE_IipS0AKGDqOTmpZauU0HJGvq2CH-OmD7ani0OOP8KAia6wCzYj_dLblIMP-UCXQzd57Kg7UAb04he9xj3mkMMd0pXdDGX29CaH3dTbHOLwkjxb2z7hq4d-Sm4_nH9dXFSXVx-Xi_eXlRfQ5kqCVI7Jolq32NVtbXXDHaIEbQXz0GmntRK2tc4J56RuLGt8rRysUXHU9Sl5d8-7n9wOO49DHm1v9mPY2fFgog3m380QvptNvDMMWCMFQGF488Awxp8Tpmx2IXnseztgnJLhquWC1bxlBfr6P-g2TuNQ_BmuQQqhQLYFJe9R5bMpjbh-VMPAHNMznz6f315f3SyW5pheKeaYXjk8-9vL49mfuOrfIamYMg</recordid><startdate>20230426</startdate><enddate>20230426</enddate><creator>Eichler, Amelie</creator><creator>Kleidonas, Dimitrios</creator><creator>Turi, Zsolt</creator><creator>Fliegauf, Maximilian</creator><creator>Kirsch, Matthias</creator><creator>Pfeifer, Dietmar</creator><creator>Masuda, Takahiro</creator><creator>Prinz, Marco</creator><creator>Lenz, Maximilian</creator><creator>Vlachos, Andreas</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4533-4341</orcidid><orcidid>https://orcid.org/0000-0002-3787-0427</orcidid></search><sort><creationdate>20230426</creationdate><title>Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation</title><author>Eichler, Amelie ; Kleidonas, Dimitrios ; Turi, Zsolt ; Fliegauf, Maximilian ; Kirsch, Matthias ; Pfeifer, Dietmar ; Masuda, Takahiro ; Prinz, Marco ; Lenz, Maximilian ; Vlachos, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6067b1615289ed393a842bee608a51c0d8b8875a9abb5bb684a14c37b0fe72e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal tissues</topic><topic>Animals</topic><topic>Brain</topic><topic>Cytokines</topic><topic>Excitability</topic><topic>Female</topic><topic>Immune system</topic><topic>Interleukin 6</topic><topic>Magnetic fields</topic><topic>Magnetic Phenomena</topic><topic>Male</topic><topic>Mice</topic><topic>Microglia</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuroplasticity</topic><topic>Neurotransmission</topic><topic>Plasticity</topic><topic>Synaptic plasticity</topic><topic>Transcranial magnetic stimulation</topic><topic>Transcranial Magnetic Stimulation - methods</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichler, Amelie</creatorcontrib><creatorcontrib>Kleidonas, Dimitrios</creatorcontrib><creatorcontrib>Turi, Zsolt</creatorcontrib><creatorcontrib>Fliegauf, Maximilian</creatorcontrib><creatorcontrib>Kirsch, Matthias</creatorcontrib><creatorcontrib>Pfeifer, Dietmar</creatorcontrib><creatorcontrib>Masuda, Takahiro</creatorcontrib><creatorcontrib>Prinz, Marco</creatorcontrib><creatorcontrib>Lenz, Maximilian</creatorcontrib><creatorcontrib>Vlachos, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichler, Amelie</au><au>Kleidonas, Dimitrios</au><au>Turi, Zsolt</au><au>Fliegauf, Maximilian</au><au>Kirsch, Matthias</au><au>Pfeifer, Dietmar</au><au>Masuda, Takahiro</au><au>Prinz, Marco</au><au>Lenz, Maximilian</au><au>Vlachos, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2023-04-26</date><risdate>2023</risdate><volume>43</volume><issue>17</issue><spage>3042</spage><epage>3060</epage><pages>3042-3060</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings,
depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>36977586</pmid><doi>10.1523/jneurosci.2226-22.2023</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4533-4341</orcidid><orcidid>https://orcid.org/0000-0002-3787-0427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2023-04, Vol.43 (17), p.3042-3060 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10146500 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animal tissues Animals Brain Cytokines Excitability Female Immune system Interleukin 6 Magnetic fields Magnetic Phenomena Male Mice Microglia Neuronal Plasticity - physiology Neuroplasticity Neurotransmission Plasticity Synaptic plasticity Transcranial magnetic stimulation Transcranial Magnetic Stimulation - methods Tumor necrosis factor-α |
title | Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microglial%20Cytokines%20Mediate%20Plasticity%20Induced%20by%2010%20Hz%20Repetitive%20Magnetic%20Stimulation&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Eichler,%20Amelie&rft.date=2023-04-26&rft.volume=43&rft.issue=17&rft.spage=3042&rft.epage=3060&rft.pages=3042-3060&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.2226-22.2023&rft_dat=%3Cproquest_pubme%3E2792513291%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806557069&rft_id=info:pmid/36977586&rfr_iscdi=true |