Effect of Heat Input on Microstructure and Mechanical Properties of Deposited Metal of E120C-K4 High Strength Steel Flux-Cored Wire
The effect of different heat inputs of 1.45 kJ/mm, 1.78 kJ/mm and 2.31 kJ/mm on the microstructure and mechanical properties of deposited metals of the self-developed AWS A5.28 E120C-K4 high strength steel flux-cored wire was studied by optical microscope, scanning electron microscope and mechanical...
Gespeichert in:
Veröffentlicht in: | Materials 2023-04, Vol.16 (8), p.3239 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 3239 |
container_title | Materials |
container_volume | 16 |
creator | Wu, Wen Zhang, Tianli Chen, Haoxin Peng, Jingjing Yang, Kaiqin Lin, Sanbao Wen, Peiyin Li, Zhuoxin Yang, Shanglei Kou, Sindo |
description | The effect of different heat inputs of 1.45 kJ/mm, 1.78 kJ/mm and 2.31 kJ/mm on the microstructure and mechanical properties of deposited metals of the self-developed AWS A5.28 E120C-K4 high strength steel flux-cored wire was studied by optical microscope, scanning electron microscope and mechanical property test. With the increase in heat input, the results showed that the microstructure of deposited metals became coarse. Acicular ferrite increased at first and then decreased, granular bainite increased and degenerated upper bainite and martensite decreased slightly. Under the low heat input of 1.45 kJ/mm, the cooling rate was fast and the element diffusion was uneven, which caused composition segregation and easy to form large size inclusions SiO
-TiC-CeAlO
with weak binding to the matrix. Under the middle heat input of 1.78 kJ/mm, the composite rare earth inclusions in dimples were mainly TiC-CeAlO
. The dimples were small and uniformly distributed, and the dimple fracture mainly depended on the wall-breaking connection between medium-sized dimples rather than an intermediate media. Under the high heat input of 2.31 kJ/mm, SiO
was easy to adhere to high melting point Al
O
oxides to form irregular composite inclusions. Such irregular inclusions do not need to absorb too much energy to form necking. Finally, the integrated effects of microstructure and inclusions resulted in the optimum mechanical properties of deposited metals with a heat input of 1.78 kJ/mm, which was a tensile strength of 793 MPa and an average impact toughness at -40 °C of 56 J. |
doi_str_mv | 10.3390/ma16083239 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10141100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747461050</galeid><sourcerecordid>A747461050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-2d3afaeb1a53d224ef63be90dcd77a19b4d7c1ca0dde48e1893e94a1061353263</originalsourceid><addsrcrecordid>eNpdkktv1DAQgCMEolXphR-ALHFBSCl-JY5PqFq2bEUrkABxtLz2ZNdVYqe2g-DMH8fRllKwDx7PfPOyp6qeE3zGmMRvRk1a3DHK5KPqmEjZ1kRy_viBfFSdpnSDy2KMdFQ-rY6YIARj0RxXv9Z9Dyaj0KMN6Iwu_TSXm0fXzsSQcpxNniMg7S26BrPX3hk9oE8xTBCzg7R4voMpJJdhQXKxFtWaULyqP3C0cbs9-pwj-F1eBIABXQzzj3oVYnH45iI8q570ekhweneeVF8v1l9Wm_rq4_vL1flVbThvc00t072GLdENs5Ry6Fu2BYmtsUJoIrfcCkOMxtYC74B0koHkmuCWsIbRlp1Ubw9xp3k7gjXgc9SDmqIbdfypgnbqX4t3e7UL3xXBhC8PViK8uosQw-0MKavRJQPDoD2EOSnaYSEpKwkL-vI_9CbM0Zf-FqpthKC8KdTZgdrpAZTzfSiJTdkWRmeCh94V_bnggrcEN0sFrw8Oy--kCP19-QSrZSDU34Eo8IuHDd-jf76f_QacqK-r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806577245</pqid></control><display><type>article</type><title>Effect of Heat Input on Microstructure and Mechanical Properties of Deposited Metal of E120C-K4 High Strength Steel Flux-Cored Wire</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Wu, Wen ; Zhang, Tianli ; Chen, Haoxin ; Peng, Jingjing ; Yang, Kaiqin ; Lin, Sanbao ; Wen, Peiyin ; Li, Zhuoxin ; Yang, Shanglei ; Kou, Sindo</creator><creatorcontrib>Wu, Wen ; Zhang, Tianli ; Chen, Haoxin ; Peng, Jingjing ; Yang, Kaiqin ; Lin, Sanbao ; Wen, Peiyin ; Li, Zhuoxin ; Yang, Shanglei ; Kou, Sindo</creatorcontrib><description>The effect of different heat inputs of 1.45 kJ/mm, 1.78 kJ/mm and 2.31 kJ/mm on the microstructure and mechanical properties of deposited metals of the self-developed AWS A5.28 E120C-K4 high strength steel flux-cored wire was studied by optical microscope, scanning electron microscope and mechanical property test. With the increase in heat input, the results showed that the microstructure of deposited metals became coarse. Acicular ferrite increased at first and then decreased, granular bainite increased and degenerated upper bainite and martensite decreased slightly. Under the low heat input of 1.45 kJ/mm, the cooling rate was fast and the element diffusion was uneven, which caused composition segregation and easy to form large size inclusions SiO
-TiC-CeAlO
with weak binding to the matrix. Under the middle heat input of 1.78 kJ/mm, the composite rare earth inclusions in dimples were mainly TiC-CeAlO
. The dimples were small and uniformly distributed, and the dimple fracture mainly depended on the wall-breaking connection between medium-sized dimples rather than an intermediate media. Under the high heat input of 2.31 kJ/mm, SiO
was easy to adhere to high melting point Al
O
oxides to form irregular composite inclusions. Such irregular inclusions do not need to absorb too much energy to form necking. Finally, the integrated effects of microstructure and inclusions resulted in the optimum mechanical properties of deposited metals with a heat input of 1.78 kJ/mm, which was a tensile strength of 793 MPa and an average impact toughness at -40 °C of 56 J.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16083239</identifier><identifier>PMID: 37110075</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum oxide ; Analysis ; Bainite ; Cooling ; Cooling rate ; Diffusion rate ; Dimpling ; Flux cored wires ; Heat treating ; High strength steel ; High strength steels ; High temperature ; Impact strength ; Inclusions ; Martensite ; Mechanical properties ; Melting points ; Metals ; Microstructure ; Morphology ; Necking ; Optical microscopes ; Optical properties ; Silicon dioxide ; Steel ; Steel, High strength ; Tensile strength ; Welding ; Welding equipment</subject><ispartof>Materials, 2023-04, Vol.16 (8), p.3239</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-2d3afaeb1a53d224ef63be90dcd77a19b4d7c1ca0dde48e1893e94a1061353263</citedby><cites>FETCH-LOGICAL-c446t-2d3afaeb1a53d224ef63be90dcd77a19b4d7c1ca0dde48e1893e94a1061353263</cites><orcidid>0000-0002-0900-6316 ; 0000-0002-9685-3491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37110075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Wen</creatorcontrib><creatorcontrib>Zhang, Tianli</creatorcontrib><creatorcontrib>Chen, Haoxin</creatorcontrib><creatorcontrib>Peng, Jingjing</creatorcontrib><creatorcontrib>Yang, Kaiqin</creatorcontrib><creatorcontrib>Lin, Sanbao</creatorcontrib><creatorcontrib>Wen, Peiyin</creatorcontrib><creatorcontrib>Li, Zhuoxin</creatorcontrib><creatorcontrib>Yang, Shanglei</creatorcontrib><creatorcontrib>Kou, Sindo</creatorcontrib><title>Effect of Heat Input on Microstructure and Mechanical Properties of Deposited Metal of E120C-K4 High Strength Steel Flux-Cored Wire</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The effect of different heat inputs of 1.45 kJ/mm, 1.78 kJ/mm and 2.31 kJ/mm on the microstructure and mechanical properties of deposited metals of the self-developed AWS A5.28 E120C-K4 high strength steel flux-cored wire was studied by optical microscope, scanning electron microscope and mechanical property test. With the increase in heat input, the results showed that the microstructure of deposited metals became coarse. Acicular ferrite increased at first and then decreased, granular bainite increased and degenerated upper bainite and martensite decreased slightly. Under the low heat input of 1.45 kJ/mm, the cooling rate was fast and the element diffusion was uneven, which caused composition segregation and easy to form large size inclusions SiO
-TiC-CeAlO
with weak binding to the matrix. Under the middle heat input of 1.78 kJ/mm, the composite rare earth inclusions in dimples were mainly TiC-CeAlO
. The dimples were small and uniformly distributed, and the dimple fracture mainly depended on the wall-breaking connection between medium-sized dimples rather than an intermediate media. Under the high heat input of 2.31 kJ/mm, SiO
was easy to adhere to high melting point Al
O
oxides to form irregular composite inclusions. Such irregular inclusions do not need to absorb too much energy to form necking. Finally, the integrated effects of microstructure and inclusions resulted in the optimum mechanical properties of deposited metals with a heat input of 1.78 kJ/mm, which was a tensile strength of 793 MPa and an average impact toughness at -40 °C of 56 J.</description><subject>Alloys</subject><subject>Aluminum oxide</subject><subject>Analysis</subject><subject>Bainite</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Diffusion rate</subject><subject>Dimpling</subject><subject>Flux cored wires</subject><subject>Heat treating</subject><subject>High strength steel</subject><subject>High strength steels</subject><subject>High temperature</subject><subject>Impact strength</subject><subject>Inclusions</subject><subject>Martensite</subject><subject>Mechanical properties</subject><subject>Melting points</subject><subject>Metals</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Necking</subject><subject>Optical microscopes</subject><subject>Optical properties</subject><subject>Silicon dioxide</subject><subject>Steel</subject><subject>Steel, High strength</subject><subject>Tensile strength</subject><subject>Welding</subject><subject>Welding equipment</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkktv1DAQgCMEolXphR-ALHFBSCl-JY5PqFq2bEUrkABxtLz2ZNdVYqe2g-DMH8fRllKwDx7PfPOyp6qeE3zGmMRvRk1a3DHK5KPqmEjZ1kRy_viBfFSdpnSDy2KMdFQ-rY6YIARj0RxXv9Z9Dyaj0KMN6Iwu_TSXm0fXzsSQcpxNniMg7S26BrPX3hk9oE8xTBCzg7R4voMpJJdhQXKxFtWaULyqP3C0cbs9-pwj-F1eBIABXQzzj3oVYnH45iI8q570ekhweneeVF8v1l9Wm_rq4_vL1flVbThvc00t072GLdENs5Ry6Fu2BYmtsUJoIrfcCkOMxtYC74B0koHkmuCWsIbRlp1Ubw9xp3k7gjXgc9SDmqIbdfypgnbqX4t3e7UL3xXBhC8PViK8uosQw-0MKavRJQPDoD2EOSnaYSEpKwkL-vI_9CbM0Zf-FqpthKC8KdTZgdrpAZTzfSiJTdkWRmeCh94V_bnggrcEN0sFrw8Oy--kCP19-QSrZSDU34Eo8IuHDd-jf76f_QacqK-r</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Wu, Wen</creator><creator>Zhang, Tianli</creator><creator>Chen, Haoxin</creator><creator>Peng, Jingjing</creator><creator>Yang, Kaiqin</creator><creator>Lin, Sanbao</creator><creator>Wen, Peiyin</creator><creator>Li, Zhuoxin</creator><creator>Yang, Shanglei</creator><creator>Kou, Sindo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0900-6316</orcidid><orcidid>https://orcid.org/0000-0002-9685-3491</orcidid></search><sort><creationdate>20230420</creationdate><title>Effect of Heat Input on Microstructure and Mechanical Properties of Deposited Metal of E120C-K4 High Strength Steel Flux-Cored Wire</title><author>Wu, Wen ; Zhang, Tianli ; Chen, Haoxin ; Peng, Jingjing ; Yang, Kaiqin ; Lin, Sanbao ; Wen, Peiyin ; Li, Zhuoxin ; Yang, Shanglei ; Kou, Sindo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-2d3afaeb1a53d224ef63be90dcd77a19b4d7c1ca0dde48e1893e94a1061353263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum oxide</topic><topic>Analysis</topic><topic>Bainite</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Diffusion rate</topic><topic>Dimpling</topic><topic>Flux cored wires</topic><topic>Heat treating</topic><topic>High strength steel</topic><topic>High strength steels</topic><topic>High temperature</topic><topic>Impact strength</topic><topic>Inclusions</topic><topic>Martensite</topic><topic>Mechanical properties</topic><topic>Melting points</topic><topic>Metals</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Necking</topic><topic>Optical microscopes</topic><topic>Optical properties</topic><topic>Silicon dioxide</topic><topic>Steel</topic><topic>Steel, High strength</topic><topic>Tensile strength</topic><topic>Welding</topic><topic>Welding equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wen</creatorcontrib><creatorcontrib>Zhang, Tianli</creatorcontrib><creatorcontrib>Chen, Haoxin</creatorcontrib><creatorcontrib>Peng, Jingjing</creatorcontrib><creatorcontrib>Yang, Kaiqin</creatorcontrib><creatorcontrib>Lin, Sanbao</creatorcontrib><creatorcontrib>Wen, Peiyin</creatorcontrib><creatorcontrib>Li, Zhuoxin</creatorcontrib><creatorcontrib>Yang, Shanglei</creatorcontrib><creatorcontrib>Kou, Sindo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wen</au><au>Zhang, Tianli</au><au>Chen, Haoxin</au><au>Peng, Jingjing</au><au>Yang, Kaiqin</au><au>Lin, Sanbao</au><au>Wen, Peiyin</au><au>Li, Zhuoxin</au><au>Yang, Shanglei</au><au>Kou, Sindo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Heat Input on Microstructure and Mechanical Properties of Deposited Metal of E120C-K4 High Strength Steel Flux-Cored Wire</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-04-20</date><risdate>2023</risdate><volume>16</volume><issue>8</issue><spage>3239</spage><pages>3239-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The effect of different heat inputs of 1.45 kJ/mm, 1.78 kJ/mm and 2.31 kJ/mm on the microstructure and mechanical properties of deposited metals of the self-developed AWS A5.28 E120C-K4 high strength steel flux-cored wire was studied by optical microscope, scanning electron microscope and mechanical property test. With the increase in heat input, the results showed that the microstructure of deposited metals became coarse. Acicular ferrite increased at first and then decreased, granular bainite increased and degenerated upper bainite and martensite decreased slightly. Under the low heat input of 1.45 kJ/mm, the cooling rate was fast and the element diffusion was uneven, which caused composition segregation and easy to form large size inclusions SiO
-TiC-CeAlO
with weak binding to the matrix. Under the middle heat input of 1.78 kJ/mm, the composite rare earth inclusions in dimples were mainly TiC-CeAlO
. The dimples were small and uniformly distributed, and the dimple fracture mainly depended on the wall-breaking connection between medium-sized dimples rather than an intermediate media. Under the high heat input of 2.31 kJ/mm, SiO
was easy to adhere to high melting point Al
O
oxides to form irregular composite inclusions. Such irregular inclusions do not need to absorb too much energy to form necking. Finally, the integrated effects of microstructure and inclusions resulted in the optimum mechanical properties of deposited metals with a heat input of 1.78 kJ/mm, which was a tensile strength of 793 MPa and an average impact toughness at -40 °C of 56 J.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37110075</pmid><doi>10.3390/ma16083239</doi><orcidid>https://orcid.org/0000-0002-0900-6316</orcidid><orcidid>https://orcid.org/0000-0002-9685-3491</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-04, Vol.16 (8), p.3239 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10141100 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloys Aluminum oxide Analysis Bainite Cooling Cooling rate Diffusion rate Dimpling Flux cored wires Heat treating High strength steel High strength steels High temperature Impact strength Inclusions Martensite Mechanical properties Melting points Metals Microstructure Morphology Necking Optical microscopes Optical properties Silicon dioxide Steel Steel, High strength Tensile strength Welding Welding equipment |
title | Effect of Heat Input on Microstructure and Mechanical Properties of Deposited Metal of E120C-K4 High Strength Steel Flux-Cored Wire |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Heat%20Input%20on%20Microstructure%20and%20Mechanical%20Properties%20of%20Deposited%20Metal%20of%20E120C-K4%20High%20Strength%20Steel%20Flux-Cored%20Wire&rft.jtitle=Materials&rft.au=Wu,%20Wen&rft.date=2023-04-20&rft.volume=16&rft.issue=8&rft.spage=3239&rft.pages=3239-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16083239&rft_dat=%3Cgale_pubme%3EA747461050%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806577245&rft_id=info:pmid/37110075&rft_galeid=A747461050&rfr_iscdi=true |