The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients

Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2023-04, Vol.20 (8), p.5575
Hauptverfasser: Santilli, Valter, Mangone, Massimiliano, Diko, Anxhelo, Alviti, Federica, Bernetti, Andrea, Agostini, Francesco, Palagi, Laura, Servidio, Marila, Paoloni, Marco, Goffredo, Michela, Infarinato, Francesco, Pournajaf, Sanaz, Franceschini, Marco, Fini, Massimo, Damiani, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 5575
container_title International journal of environmental research and public health
container_volume 20
creator Santilli, Valter
Mangone, Massimiliano
Diko, Anxhelo
Alviti, Federica
Bernetti, Andrea
Agostini, Francesco
Palagi, Laura
Servidio, Marila
Paoloni, Marco
Goffredo, Michela
Infarinato, Francesco
Pournajaf, Sanaz
Franceschini, Marco
Fini, Massimo
Damiani, Carlo
description Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.
doi_str_mv 10.3390/ijerph20085575
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10139165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751912291</galeid><sourcerecordid>A751912291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4015-a3cef83763ff6abc29edfb38141c6192087b0c1471cb4b975d9c3494c8e2ab0f3</originalsourceid><addsrcrecordid>eNptks1rFTEUxQdRbK1uXUrAjZtXk8nkayWlVC08bZF2HTKZm5k8ZpJnMlNw619uRmttpWSR3OR3zuWGU1WvCT6mVOH3fgdpP9QYS8YEe1IdEs7xpuGYPL13Pqhe5LzDmMqGq-fVARUEC8n4YfXzagB0nQFFh74YO_gAaAsmBR965GJC58FBgmDXei7smXNgZ38DAXJeVQZ9g8G0fvSzmX0M6DLFPpnpt_oizUPcQ-ctMqFDX2FJcYy9t2ZElwWHMOeX1TNnxgyvbvej6vrj2dXp58324tP56cl2YxtM2MZQC05Swalz3LS2VtC5lkrSEMuJqrEULbakEcS2TasE65SljWqshNq02NGj6sMf3_3STtDZ0juZUe-Tn0z6oaPx-uFL8IPu440mmFBFOCsO724dUvy-QJ715LOFcTQB4pJ1LbFQpJFMFfTtf-guLimU-VaKs5pKJv5RvRlB--BiaWxXU30iGFGkrhUp1PEjVFkdTN7GAM6X-8cENsWcE7i7IQnWa2z0w9gUwZv7X3OH_80J_QUr7r9a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806523857</pqid></control><display><type>article</type><title>The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Santilli, Valter ; Mangone, Massimiliano ; Diko, Anxhelo ; Alviti, Federica ; Bernetti, Andrea ; Agostini, Francesco ; Palagi, Laura ; Servidio, Marila ; Paoloni, Marco ; Goffredo, Michela ; Infarinato, Francesco ; Pournajaf, Sanaz ; Franceschini, Marco ; Fini, Massimo ; Damiani, Carlo</creator><creatorcontrib>Santilli, Valter ; Mangone, Massimiliano ; Diko, Anxhelo ; Alviti, Federica ; Bernetti, Andrea ; Agostini, Francesco ; Palagi, Laura ; Servidio, Marila ; Paoloni, Marco ; Goffredo, Michela ; Infarinato, Francesco ; Pournajaf, Sanaz ; Franceschini, Marco ; Fini, Massimo ; Damiani, Carlo</creatorcontrib><description>Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph20085575</identifier><identifier>PMID: 37107856</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activities of Daily Living ; Algorithms ; Artificial Intelligence ; Computational linguistics ; Data mining ; Datasets ; Efficiency ; Hospitalization ; Hospitals ; Humans ; Intervention ; Language processing ; Learning algorithms ; Machine Learning ; Medical research ; Medicine, Experimental ; Missing data ; Natural language interfaces ; Orthopedics ; Patients ; Precision medicine ; Rehabilitation ; Root-mean-square errors ; Variables</subject><ispartof>International journal of environmental research and public health, 2023-04, Vol.20 (8), p.5575</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4015-a3cef83763ff6abc29edfb38141c6192087b0c1471cb4b975d9c3494c8e2ab0f3</citedby><cites>FETCH-LOGICAL-c4015-a3cef83763ff6abc29edfb38141c6192087b0c1471cb4b975d9c3494c8e2ab0f3</cites><orcidid>0000-0003-3162-3473 ; 0000-0002-0947-9711 ; 0000-0002-2651-8479 ; 0000-0002-5570-8490 ; 0000-0001-8749-2236 ; 0000-0002-9496-6097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139165/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37107856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santilli, Valter</creatorcontrib><creatorcontrib>Mangone, Massimiliano</creatorcontrib><creatorcontrib>Diko, Anxhelo</creatorcontrib><creatorcontrib>Alviti, Federica</creatorcontrib><creatorcontrib>Bernetti, Andrea</creatorcontrib><creatorcontrib>Agostini, Francesco</creatorcontrib><creatorcontrib>Palagi, Laura</creatorcontrib><creatorcontrib>Servidio, Marila</creatorcontrib><creatorcontrib>Paoloni, Marco</creatorcontrib><creatorcontrib>Goffredo, Michela</creatorcontrib><creatorcontrib>Infarinato, Francesco</creatorcontrib><creatorcontrib>Pournajaf, Sanaz</creatorcontrib><creatorcontrib>Franceschini, Marco</creatorcontrib><creatorcontrib>Fini, Massimo</creatorcontrib><creatorcontrib>Damiani, Carlo</creatorcontrib><title>The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.</description><subject>Activities of Daily Living</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational linguistics</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Hospitalization</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Intervention</subject><subject>Language processing</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Missing data</subject><subject>Natural language interfaces</subject><subject>Orthopedics</subject><subject>Patients</subject><subject>Precision medicine</subject><subject>Rehabilitation</subject><subject>Root-mean-square errors</subject><subject>Variables</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptks1rFTEUxQdRbK1uXUrAjZtXk8nkayWlVC08bZF2HTKZm5k8ZpJnMlNw619uRmttpWSR3OR3zuWGU1WvCT6mVOH3fgdpP9QYS8YEe1IdEs7xpuGYPL13Pqhe5LzDmMqGq-fVARUEC8n4YfXzagB0nQFFh74YO_gAaAsmBR965GJC58FBgmDXei7smXNgZ38DAXJeVQZ9g8G0fvSzmX0M6DLFPpnpt_oizUPcQ-ctMqFDX2FJcYy9t2ZElwWHMOeX1TNnxgyvbvej6vrj2dXp58324tP56cl2YxtM2MZQC05Swalz3LS2VtC5lkrSEMuJqrEULbakEcS2TasE65SljWqshNq02NGj6sMf3_3STtDZ0juZUe-Tn0z6oaPx-uFL8IPu440mmFBFOCsO724dUvy-QJ715LOFcTQB4pJ1LbFQpJFMFfTtf-guLimU-VaKs5pKJv5RvRlB--BiaWxXU30iGFGkrhUp1PEjVFkdTN7GAM6X-8cENsWcE7i7IQnWa2z0w9gUwZv7X3OH_80J_QUr7r9a</recordid><startdate>20230419</startdate><enddate>20230419</enddate><creator>Santilli, Valter</creator><creator>Mangone, Massimiliano</creator><creator>Diko, Anxhelo</creator><creator>Alviti, Federica</creator><creator>Bernetti, Andrea</creator><creator>Agostini, Francesco</creator><creator>Palagi, Laura</creator><creator>Servidio, Marila</creator><creator>Paoloni, Marco</creator><creator>Goffredo, Michela</creator><creator>Infarinato, Francesco</creator><creator>Pournajaf, Sanaz</creator><creator>Franceschini, Marco</creator><creator>Fini, Massimo</creator><creator>Damiani, Carlo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3162-3473</orcidid><orcidid>https://orcid.org/0000-0002-0947-9711</orcidid><orcidid>https://orcid.org/0000-0002-2651-8479</orcidid><orcidid>https://orcid.org/0000-0002-5570-8490</orcidid><orcidid>https://orcid.org/0000-0001-8749-2236</orcidid><orcidid>https://orcid.org/0000-0002-9496-6097</orcidid></search><sort><creationdate>20230419</creationdate><title>The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients</title><author>Santilli, Valter ; Mangone, Massimiliano ; Diko, Anxhelo ; Alviti, Federica ; Bernetti, Andrea ; Agostini, Francesco ; Palagi, Laura ; Servidio, Marila ; Paoloni, Marco ; Goffredo, Michela ; Infarinato, Francesco ; Pournajaf, Sanaz ; Franceschini, Marco ; Fini, Massimo ; Damiani, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4015-a3cef83763ff6abc29edfb38141c6192087b0c1471cb4b975d9c3494c8e2ab0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activities of Daily Living</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational linguistics</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Hospitalization</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Intervention</topic><topic>Language processing</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Missing data</topic><topic>Natural language interfaces</topic><topic>Orthopedics</topic><topic>Patients</topic><topic>Precision medicine</topic><topic>Rehabilitation</topic><topic>Root-mean-square errors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santilli, Valter</creatorcontrib><creatorcontrib>Mangone, Massimiliano</creatorcontrib><creatorcontrib>Diko, Anxhelo</creatorcontrib><creatorcontrib>Alviti, Federica</creatorcontrib><creatorcontrib>Bernetti, Andrea</creatorcontrib><creatorcontrib>Agostini, Francesco</creatorcontrib><creatorcontrib>Palagi, Laura</creatorcontrib><creatorcontrib>Servidio, Marila</creatorcontrib><creatorcontrib>Paoloni, Marco</creatorcontrib><creatorcontrib>Goffredo, Michela</creatorcontrib><creatorcontrib>Infarinato, Francesco</creatorcontrib><creatorcontrib>Pournajaf, Sanaz</creatorcontrib><creatorcontrib>Franceschini, Marco</creatorcontrib><creatorcontrib>Fini, Massimo</creatorcontrib><creatorcontrib>Damiani, Carlo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santilli, Valter</au><au>Mangone, Massimiliano</au><au>Diko, Anxhelo</au><au>Alviti, Federica</au><au>Bernetti, Andrea</au><au>Agostini, Francesco</au><au>Palagi, Laura</au><au>Servidio, Marila</au><au>Paoloni, Marco</au><au>Goffredo, Michela</au><au>Infarinato, Francesco</au><au>Pournajaf, Sanaz</au><au>Franceschini, Marco</au><au>Fini, Massimo</au><au>Damiani, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2023-04-19</date><risdate>2023</risdate><volume>20</volume><issue>8</issue><spage>5575</spage><pages>5575-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37107856</pmid><doi>10.3390/ijerph20085575</doi><orcidid>https://orcid.org/0000-0003-3162-3473</orcidid><orcidid>https://orcid.org/0000-0002-0947-9711</orcidid><orcidid>https://orcid.org/0000-0002-2651-8479</orcidid><orcidid>https://orcid.org/0000-0002-5570-8490</orcidid><orcidid>https://orcid.org/0000-0001-8749-2236</orcidid><orcidid>https://orcid.org/0000-0002-9496-6097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2023-04, Vol.20 (8), p.5575
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10139165
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Activities of Daily Living
Algorithms
Artificial Intelligence
Computational linguistics
Data mining
Datasets
Efficiency
Hospitalization
Hospitals
Humans
Intervention
Language processing
Learning algorithms
Machine Learning
Medical research
Medicine, Experimental
Missing data
Natural language interfaces
Orthopedics
Patients
Precision medicine
Rehabilitation
Root-mean-square errors
Variables
title The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Machine%20Learning%20for%20Inferencing%20the%20Effectiveness%20of%20a%20Rehabilitation%20Program%20for%20Orthopedic%20and%20Neurological%20Patients&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Santilli,%20Valter&rft.date=2023-04-19&rft.volume=20&rft.issue=8&rft.spage=5575&rft.pages=5575-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph20085575&rft_dat=%3Cgale_pubme%3EA751912291%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806523857&rft_id=info:pmid/37107856&rft_galeid=A751912291&rfr_iscdi=true