The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2023-04, Vol.20 (8), p.5575 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 5575 |
container_title | International journal of environmental research and public health |
container_volume | 20 |
creator | Santilli, Valter Mangone, Massimiliano Diko, Anxhelo Alviti, Federica Bernetti, Andrea Agostini, Francesco Palagi, Laura Servidio, Marila Paoloni, Marco Goffredo, Michela Infarinato, Francesco Pournajaf, Sanaz Franceschini, Marco Fini, Massimo Damiani, Carlo |
description | Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation. |
doi_str_mv | 10.3390/ijerph20085575 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10139165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751912291</galeid><sourcerecordid>A751912291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4015-a3cef83763ff6abc29edfb38141c6192087b0c1471cb4b975d9c3494c8e2ab0f3</originalsourceid><addsrcrecordid>eNptks1rFTEUxQdRbK1uXUrAjZtXk8nkayWlVC08bZF2HTKZm5k8ZpJnMlNw619uRmttpWSR3OR3zuWGU1WvCT6mVOH3fgdpP9QYS8YEe1IdEs7xpuGYPL13Pqhe5LzDmMqGq-fVARUEC8n4YfXzagB0nQFFh74YO_gAaAsmBR965GJC58FBgmDXei7smXNgZ38DAXJeVQZ9g8G0fvSzmX0M6DLFPpnpt_oizUPcQ-ctMqFDX2FJcYy9t2ZElwWHMOeX1TNnxgyvbvej6vrj2dXp58324tP56cl2YxtM2MZQC05Swalz3LS2VtC5lkrSEMuJqrEULbakEcS2TasE65SljWqshNq02NGj6sMf3_3STtDZ0juZUe-Tn0z6oaPx-uFL8IPu440mmFBFOCsO724dUvy-QJ715LOFcTQB4pJ1LbFQpJFMFfTtf-guLimU-VaKs5pKJv5RvRlB--BiaWxXU30iGFGkrhUp1PEjVFkdTN7GAM6X-8cENsWcE7i7IQnWa2z0w9gUwZv7X3OH_80J_QUr7r9a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806523857</pqid></control><display><type>article</type><title>The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Santilli, Valter ; Mangone, Massimiliano ; Diko, Anxhelo ; Alviti, Federica ; Bernetti, Andrea ; Agostini, Francesco ; Palagi, Laura ; Servidio, Marila ; Paoloni, Marco ; Goffredo, Michela ; Infarinato, Francesco ; Pournajaf, Sanaz ; Franceschini, Marco ; Fini, Massimo ; Damiani, Carlo</creator><creatorcontrib>Santilli, Valter ; Mangone, Massimiliano ; Diko, Anxhelo ; Alviti, Federica ; Bernetti, Andrea ; Agostini, Francesco ; Palagi, Laura ; Servidio, Marila ; Paoloni, Marco ; Goffredo, Michela ; Infarinato, Francesco ; Pournajaf, Sanaz ; Franceschini, Marco ; Fini, Massimo ; Damiani, Carlo</creatorcontrib><description>Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph20085575</identifier><identifier>PMID: 37107856</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activities of Daily Living ; Algorithms ; Artificial Intelligence ; Computational linguistics ; Data mining ; Datasets ; Efficiency ; Hospitalization ; Hospitals ; Humans ; Intervention ; Language processing ; Learning algorithms ; Machine Learning ; Medical research ; Medicine, Experimental ; Missing data ; Natural language interfaces ; Orthopedics ; Patients ; Precision medicine ; Rehabilitation ; Root-mean-square errors ; Variables</subject><ispartof>International journal of environmental research and public health, 2023-04, Vol.20 (8), p.5575</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4015-a3cef83763ff6abc29edfb38141c6192087b0c1471cb4b975d9c3494c8e2ab0f3</citedby><cites>FETCH-LOGICAL-c4015-a3cef83763ff6abc29edfb38141c6192087b0c1471cb4b975d9c3494c8e2ab0f3</cites><orcidid>0000-0003-3162-3473 ; 0000-0002-0947-9711 ; 0000-0002-2651-8479 ; 0000-0002-5570-8490 ; 0000-0001-8749-2236 ; 0000-0002-9496-6097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139165/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37107856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santilli, Valter</creatorcontrib><creatorcontrib>Mangone, Massimiliano</creatorcontrib><creatorcontrib>Diko, Anxhelo</creatorcontrib><creatorcontrib>Alviti, Federica</creatorcontrib><creatorcontrib>Bernetti, Andrea</creatorcontrib><creatorcontrib>Agostini, Francesco</creatorcontrib><creatorcontrib>Palagi, Laura</creatorcontrib><creatorcontrib>Servidio, Marila</creatorcontrib><creatorcontrib>Paoloni, Marco</creatorcontrib><creatorcontrib>Goffredo, Michela</creatorcontrib><creatorcontrib>Infarinato, Francesco</creatorcontrib><creatorcontrib>Pournajaf, Sanaz</creatorcontrib><creatorcontrib>Franceschini, Marco</creatorcontrib><creatorcontrib>Fini, Massimo</creatorcontrib><creatorcontrib>Damiani, Carlo</creatorcontrib><title>The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.</description><subject>Activities of Daily Living</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational linguistics</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Hospitalization</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Intervention</subject><subject>Language processing</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Missing data</subject><subject>Natural language interfaces</subject><subject>Orthopedics</subject><subject>Patients</subject><subject>Precision medicine</subject><subject>Rehabilitation</subject><subject>Root-mean-square errors</subject><subject>Variables</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptks1rFTEUxQdRbK1uXUrAjZtXk8nkayWlVC08bZF2HTKZm5k8ZpJnMlNw619uRmttpWSR3OR3zuWGU1WvCT6mVOH3fgdpP9QYS8YEe1IdEs7xpuGYPL13Pqhe5LzDmMqGq-fVARUEC8n4YfXzagB0nQFFh74YO_gAaAsmBR965GJC58FBgmDXei7smXNgZ38DAXJeVQZ9g8G0fvSzmX0M6DLFPpnpt_oizUPcQ-ctMqFDX2FJcYy9t2ZElwWHMOeX1TNnxgyvbvej6vrj2dXp58324tP56cl2YxtM2MZQC05Swalz3LS2VtC5lkrSEMuJqrEULbakEcS2TasE65SljWqshNq02NGj6sMf3_3STtDZ0juZUe-Tn0z6oaPx-uFL8IPu440mmFBFOCsO724dUvy-QJ715LOFcTQB4pJ1LbFQpJFMFfTtf-guLimU-VaKs5pKJv5RvRlB--BiaWxXU30iGFGkrhUp1PEjVFkdTN7GAM6X-8cENsWcE7i7IQnWa2z0w9gUwZv7X3OH_80J_QUr7r9a</recordid><startdate>20230419</startdate><enddate>20230419</enddate><creator>Santilli, Valter</creator><creator>Mangone, Massimiliano</creator><creator>Diko, Anxhelo</creator><creator>Alviti, Federica</creator><creator>Bernetti, Andrea</creator><creator>Agostini, Francesco</creator><creator>Palagi, Laura</creator><creator>Servidio, Marila</creator><creator>Paoloni, Marco</creator><creator>Goffredo, Michela</creator><creator>Infarinato, Francesco</creator><creator>Pournajaf, Sanaz</creator><creator>Franceschini, Marco</creator><creator>Fini, Massimo</creator><creator>Damiani, Carlo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3162-3473</orcidid><orcidid>https://orcid.org/0000-0002-0947-9711</orcidid><orcidid>https://orcid.org/0000-0002-2651-8479</orcidid><orcidid>https://orcid.org/0000-0002-5570-8490</orcidid><orcidid>https://orcid.org/0000-0001-8749-2236</orcidid><orcidid>https://orcid.org/0000-0002-9496-6097</orcidid></search><sort><creationdate>20230419</creationdate><title>The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients</title><author>Santilli, Valter ; Mangone, Massimiliano ; Diko, Anxhelo ; Alviti, Federica ; Bernetti, Andrea ; Agostini, Francesco ; Palagi, Laura ; Servidio, Marila ; Paoloni, Marco ; Goffredo, Michela ; Infarinato, Francesco ; Pournajaf, Sanaz ; Franceschini, Marco ; Fini, Massimo ; Damiani, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4015-a3cef83763ff6abc29edfb38141c6192087b0c1471cb4b975d9c3494c8e2ab0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activities of Daily Living</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational linguistics</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Hospitalization</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Intervention</topic><topic>Language processing</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Missing data</topic><topic>Natural language interfaces</topic><topic>Orthopedics</topic><topic>Patients</topic><topic>Precision medicine</topic><topic>Rehabilitation</topic><topic>Root-mean-square errors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santilli, Valter</creatorcontrib><creatorcontrib>Mangone, Massimiliano</creatorcontrib><creatorcontrib>Diko, Anxhelo</creatorcontrib><creatorcontrib>Alviti, Federica</creatorcontrib><creatorcontrib>Bernetti, Andrea</creatorcontrib><creatorcontrib>Agostini, Francesco</creatorcontrib><creatorcontrib>Palagi, Laura</creatorcontrib><creatorcontrib>Servidio, Marila</creatorcontrib><creatorcontrib>Paoloni, Marco</creatorcontrib><creatorcontrib>Goffredo, Michela</creatorcontrib><creatorcontrib>Infarinato, Francesco</creatorcontrib><creatorcontrib>Pournajaf, Sanaz</creatorcontrib><creatorcontrib>Franceschini, Marco</creatorcontrib><creatorcontrib>Fini, Massimo</creatorcontrib><creatorcontrib>Damiani, Carlo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santilli, Valter</au><au>Mangone, Massimiliano</au><au>Diko, Anxhelo</au><au>Alviti, Federica</au><au>Bernetti, Andrea</au><au>Agostini, Francesco</au><au>Palagi, Laura</au><au>Servidio, Marila</au><au>Paoloni, Marco</au><au>Goffredo, Michela</au><au>Infarinato, Francesco</au><au>Pournajaf, Sanaz</au><au>Franceschini, Marco</au><au>Fini, Massimo</au><au>Damiani, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2023-04-19</date><risdate>2023</risdate><volume>20</volume><issue>8</issue><spage>5575</spage><pages>5575-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37107856</pmid><doi>10.3390/ijerph20085575</doi><orcidid>https://orcid.org/0000-0003-3162-3473</orcidid><orcidid>https://orcid.org/0000-0002-0947-9711</orcidid><orcidid>https://orcid.org/0000-0002-2651-8479</orcidid><orcidid>https://orcid.org/0000-0002-5570-8490</orcidid><orcidid>https://orcid.org/0000-0001-8749-2236</orcidid><orcidid>https://orcid.org/0000-0002-9496-6097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2023-04, Vol.20 (8), p.5575 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10139165 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Activities of Daily Living Algorithms Artificial Intelligence Computational linguistics Data mining Datasets Efficiency Hospitalization Hospitals Humans Intervention Language processing Learning algorithms Machine Learning Medical research Medicine, Experimental Missing data Natural language interfaces Orthopedics Patients Precision medicine Rehabilitation Root-mean-square errors Variables |
title | The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Machine%20Learning%20for%20Inferencing%20the%20Effectiveness%20of%20a%20Rehabilitation%20Program%20for%20Orthopedic%20and%20Neurological%20Patients&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Santilli,%20Valter&rft.date=2023-04-19&rft.volume=20&rft.issue=8&rft.spage=5575&rft.pages=5575-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph20085575&rft_dat=%3Cgale_pubme%3EA751912291%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806523857&rft_id=info:pmid/37107856&rft_galeid=A751912291&rfr_iscdi=true |