Transcriptomics Reveal Molecular Differences in Equine Oocytes Vitrified before and after In Vitro Maturation

In the last decade, in vitro embryo production in horses has become an established clinical practice, but blastocyst rates from vitrified equine oocytes remain low. Cryopreservation impairs the oocyte developmental potential, which may be reflected in the messenger RNA (mRNA) profile. Therefore, thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-04, Vol.24 (8), p.6915
Hauptverfasser: Angel-Velez, Daniel, Meese, Tim, Hedia, Mohamed, Fernandez-Montoro, Andrea, De Coster, Tine, Pascottini, Osvaldo Bogado, Van Nieuwerburgh, Filip, Govaere, Jan, Van Soom, Ann, Pavani, Krishna, Smits, Katrien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 6915
container_title International journal of molecular sciences
container_volume 24
creator Angel-Velez, Daniel
Meese, Tim
Hedia, Mohamed
Fernandez-Montoro, Andrea
De Coster, Tine
Pascottini, Osvaldo Bogado
Van Nieuwerburgh, Filip
Govaere, Jan
Van Soom, Ann
Pavani, Krishna
Smits, Katrien
description In the last decade, in vitro embryo production in horses has become an established clinical practice, but blastocyst rates from vitrified equine oocytes remain low. Cryopreservation impairs the oocyte developmental potential, which may be reflected in the messenger RNA (mRNA) profile. Therefore, this study aimed to compare the transcriptome profiles of metaphase II equine oocytes vitrified before and after in vitro maturation. To do so, three groups were analyzed with RNA sequencing: (1) fresh in vitro matured oocytes as a control (FR), (2) oocytes vitrified after in vitro maturation (VMAT), and (3) oocytes vitrified immature, warmed, and in vitro matured (VIM). In comparison with fresh oocytes, VIM resulted in 46 differentially expressed (DE) genes (14 upregulated and 32 downregulated), while VMAT showed 36 DE genes (18 in each category). A comparison of VIM vs. VMAT resulted in 44 DE genes (20 upregulated and 24 downregulated). Pathway analyses highlighted cytoskeleton, spindle formation, and calcium and cation ion transport and homeostasis as the main affected pathways in vitrified oocytes. The vitrification of in vitro matured oocytes presented subtle advantages in terms of the mRNA profile over the vitrification of immature oocytes. Therefore, this study provides a new perspective for understanding the impact of vitrification on equine oocytes and can be the basis for further improvements in the efficiency of equine oocyte vitrification.
doi_str_mv 10.3390/ijms24086915
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10138936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751927928</galeid><sourcerecordid>A751927928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-664fa2c3ed029362070527ff07b86d879ee23d31adf22f37d54c79976ae737aa3</originalsourceid><addsrcrecordid>eNpVUU1vFDEMjRCItgs3zihHDmzJx8xkckJVaaFSq0qocI28iVNSzSTbJFOp_57AlmqRD7bs5-ePR8g7zo6l1OxTuJuL6Ng4aN6_IIe8E2LN2KBe7sUH5KiUO8aEFL1-TQ6k4mxkIz8k802GWGwO25rmYAv9jg8IE71KE9plgky_BO8xY7RYaIj07H4JEel1so-1ZX6GmoMP6OgGfcpIIToKvmKmF_FvNdErqEuGGlJ8Q155mAq-ffIr8uP87Ob02_ry-uvF6cnl2naiq-th6DwIK9ExoeUgmGK9UN4ztRkHNyqNKKSTHJwXwkvl-s4qrdUAqKQCkCvyece7XTYzOouxZpjMNocZ8qNJEMz_lRh-mdv0YDjjcmwjG8OHJ4ac7hcs1cyhWJwmiJiWYsTIlOadbvgVOd5Bb2FCE6JPjdI2c9g-miL60PInqudaKC3G1vBx12BzKiWjf16MM_NHU7OvaYO_3z_mGfxPRPkbXKue6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807914901</pqid></control><display><type>article</type><title>Transcriptomics Reveal Molecular Differences in Equine Oocytes Vitrified before and after In Vitro Maturation</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Angel-Velez, Daniel ; Meese, Tim ; Hedia, Mohamed ; Fernandez-Montoro, Andrea ; De Coster, Tine ; Pascottini, Osvaldo Bogado ; Van Nieuwerburgh, Filip ; Govaere, Jan ; Van Soom, Ann ; Pavani, Krishna ; Smits, Katrien</creator><creatorcontrib>Angel-Velez, Daniel ; Meese, Tim ; Hedia, Mohamed ; Fernandez-Montoro, Andrea ; De Coster, Tine ; Pascottini, Osvaldo Bogado ; Van Nieuwerburgh, Filip ; Govaere, Jan ; Van Soom, Ann ; Pavani, Krishna ; Smits, Katrien</creatorcontrib><description>In the last decade, in vitro embryo production in horses has become an established clinical practice, but blastocyst rates from vitrified equine oocytes remain low. Cryopreservation impairs the oocyte developmental potential, which may be reflected in the messenger RNA (mRNA) profile. Therefore, this study aimed to compare the transcriptome profiles of metaphase II equine oocytes vitrified before and after in vitro maturation. To do so, three groups were analyzed with RNA sequencing: (1) fresh in vitro matured oocytes as a control (FR), (2) oocytes vitrified after in vitro maturation (VMAT), and (3) oocytes vitrified immature, warmed, and in vitro matured (VIM). In comparison with fresh oocytes, VIM resulted in 46 differentially expressed (DE) genes (14 upregulated and 32 downregulated), while VMAT showed 36 DE genes (18 in each category). A comparison of VIM vs. VMAT resulted in 44 DE genes (20 upregulated and 24 downregulated). Pathway analyses highlighted cytoskeleton, spindle formation, and calcium and cation ion transport and homeostasis as the main affected pathways in vitrified oocytes. The vitrification of in vitro matured oocytes presented subtle advantages in terms of the mRNA profile over the vitrification of immature oocytes. Therefore, this study provides a new perspective for understanding the impact of vitrification on equine oocytes and can be the basis for further improvements in the efficiency of equine oocyte vitrification.</description><identifier>ISSN: 1422-0067</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24086915</identifier><identifier>PMID: 37108081</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Animals ; Cryopreservation - methods ; Cryopreservation - veterinary ; Embryonic development ; Genes ; Horses - genetics ; In Vitro Oocyte Maturation Techniques - methods ; Oocytes - metabolism ; RNA ; RNA sequencing ; Transcriptome ; Vitrification</subject><ispartof>International journal of molecular sciences, 2023-04, Vol.24 (8), p.6915</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-664fa2c3ed029362070527ff07b86d879ee23d31adf22f37d54c79976ae737aa3</citedby><cites>FETCH-LOGICAL-c424t-664fa2c3ed029362070527ff07b86d879ee23d31adf22f37d54c79976ae737aa3</cites><orcidid>0000-0002-0415-2744 ; 0000-0001-7043-1007 ; 0000-0002-8205-3725 ; 0000-0002-3307-9048 ; 0000-0003-1806-2368 ; 0000-0001-8815-5485 ; 0000-0002-5305-2133 ; 0000-0001-5010-6311 ; 0000-0001-8777-4065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138936/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138936/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37108081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angel-Velez, Daniel</creatorcontrib><creatorcontrib>Meese, Tim</creatorcontrib><creatorcontrib>Hedia, Mohamed</creatorcontrib><creatorcontrib>Fernandez-Montoro, Andrea</creatorcontrib><creatorcontrib>De Coster, Tine</creatorcontrib><creatorcontrib>Pascottini, Osvaldo Bogado</creatorcontrib><creatorcontrib>Van Nieuwerburgh, Filip</creatorcontrib><creatorcontrib>Govaere, Jan</creatorcontrib><creatorcontrib>Van Soom, Ann</creatorcontrib><creatorcontrib>Pavani, Krishna</creatorcontrib><creatorcontrib>Smits, Katrien</creatorcontrib><title>Transcriptomics Reveal Molecular Differences in Equine Oocytes Vitrified before and after In Vitro Maturation</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>In the last decade, in vitro embryo production in horses has become an established clinical practice, but blastocyst rates from vitrified equine oocytes remain low. Cryopreservation impairs the oocyte developmental potential, which may be reflected in the messenger RNA (mRNA) profile. Therefore, this study aimed to compare the transcriptome profiles of metaphase II equine oocytes vitrified before and after in vitro maturation. To do so, three groups were analyzed with RNA sequencing: (1) fresh in vitro matured oocytes as a control (FR), (2) oocytes vitrified after in vitro maturation (VMAT), and (3) oocytes vitrified immature, warmed, and in vitro matured (VIM). In comparison with fresh oocytes, VIM resulted in 46 differentially expressed (DE) genes (14 upregulated and 32 downregulated), while VMAT showed 36 DE genes (18 in each category). A comparison of VIM vs. VMAT resulted in 44 DE genes (20 upregulated and 24 downregulated). Pathway analyses highlighted cytoskeleton, spindle formation, and calcium and cation ion transport and homeostasis as the main affected pathways in vitrified oocytes. The vitrification of in vitro matured oocytes presented subtle advantages in terms of the mRNA profile over the vitrification of immature oocytes. Therefore, this study provides a new perspective for understanding the impact of vitrification on equine oocytes and can be the basis for further improvements in the efficiency of equine oocyte vitrification.</description><subject>Analysis</subject><subject>Animals</subject><subject>Cryopreservation - methods</subject><subject>Cryopreservation - veterinary</subject><subject>Embryonic development</subject><subject>Genes</subject><subject>Horses - genetics</subject><subject>In Vitro Oocyte Maturation Techniques - methods</subject><subject>Oocytes - metabolism</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Transcriptome</subject><subject>Vitrification</subject><issn>1422-0067</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1vFDEMjRCItgs3zihHDmzJx8xkckJVaaFSq0qocI28iVNSzSTbJFOp_57AlmqRD7bs5-ePR8g7zo6l1OxTuJuL6Ng4aN6_IIe8E2LN2KBe7sUH5KiUO8aEFL1-TQ6k4mxkIz8k802GWGwO25rmYAv9jg8IE71KE9plgky_BO8xY7RYaIj07H4JEel1so-1ZX6GmoMP6OgGfcpIIToKvmKmF_FvNdErqEuGGlJ8Q155mAq-ffIr8uP87Ob02_ry-uvF6cnl2naiq-th6DwIK9ExoeUgmGK9UN4ztRkHNyqNKKSTHJwXwkvl-s4qrdUAqKQCkCvyece7XTYzOouxZpjMNocZ8qNJEMz_lRh-mdv0YDjjcmwjG8OHJ4ac7hcs1cyhWJwmiJiWYsTIlOadbvgVOd5Bb2FCE6JPjdI2c9g-miL60PInqudaKC3G1vBx12BzKiWjf16MM_NHU7OvaYO_3z_mGfxPRPkbXKue6Q</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>Angel-Velez, Daniel</creator><creator>Meese, Tim</creator><creator>Hedia, Mohamed</creator><creator>Fernandez-Montoro, Andrea</creator><creator>De Coster, Tine</creator><creator>Pascottini, Osvaldo Bogado</creator><creator>Van Nieuwerburgh, Filip</creator><creator>Govaere, Jan</creator><creator>Van Soom, Ann</creator><creator>Pavani, Krishna</creator><creator>Smits, Katrien</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0415-2744</orcidid><orcidid>https://orcid.org/0000-0001-7043-1007</orcidid><orcidid>https://orcid.org/0000-0002-8205-3725</orcidid><orcidid>https://orcid.org/0000-0002-3307-9048</orcidid><orcidid>https://orcid.org/0000-0003-1806-2368</orcidid><orcidid>https://orcid.org/0000-0001-8815-5485</orcidid><orcidid>https://orcid.org/0000-0002-5305-2133</orcidid><orcidid>https://orcid.org/0000-0001-5010-6311</orcidid><orcidid>https://orcid.org/0000-0001-8777-4065</orcidid></search><sort><creationdate>20230407</creationdate><title>Transcriptomics Reveal Molecular Differences in Equine Oocytes Vitrified before and after In Vitro Maturation</title><author>Angel-Velez, Daniel ; Meese, Tim ; Hedia, Mohamed ; Fernandez-Montoro, Andrea ; De Coster, Tine ; Pascottini, Osvaldo Bogado ; Van Nieuwerburgh, Filip ; Govaere, Jan ; Van Soom, Ann ; Pavani, Krishna ; Smits, Katrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-664fa2c3ed029362070527ff07b86d879ee23d31adf22f37d54c79976ae737aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Cryopreservation - methods</topic><topic>Cryopreservation - veterinary</topic><topic>Embryonic development</topic><topic>Genes</topic><topic>Horses - genetics</topic><topic>In Vitro Oocyte Maturation Techniques - methods</topic><topic>Oocytes - metabolism</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Transcriptome</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angel-Velez, Daniel</creatorcontrib><creatorcontrib>Meese, Tim</creatorcontrib><creatorcontrib>Hedia, Mohamed</creatorcontrib><creatorcontrib>Fernandez-Montoro, Andrea</creatorcontrib><creatorcontrib>De Coster, Tine</creatorcontrib><creatorcontrib>Pascottini, Osvaldo Bogado</creatorcontrib><creatorcontrib>Van Nieuwerburgh, Filip</creatorcontrib><creatorcontrib>Govaere, Jan</creatorcontrib><creatorcontrib>Van Soom, Ann</creatorcontrib><creatorcontrib>Pavani, Krishna</creatorcontrib><creatorcontrib>Smits, Katrien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angel-Velez, Daniel</au><au>Meese, Tim</au><au>Hedia, Mohamed</au><au>Fernandez-Montoro, Andrea</au><au>De Coster, Tine</au><au>Pascottini, Osvaldo Bogado</au><au>Van Nieuwerburgh, Filip</au><au>Govaere, Jan</au><au>Van Soom, Ann</au><au>Pavani, Krishna</au><au>Smits, Katrien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomics Reveal Molecular Differences in Equine Oocytes Vitrified before and after In Vitro Maturation</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-04-07</date><risdate>2023</risdate><volume>24</volume><issue>8</issue><spage>6915</spage><pages>6915-</pages><issn>1422-0067</issn><eissn>1422-0067</eissn><abstract>In the last decade, in vitro embryo production in horses has become an established clinical practice, but blastocyst rates from vitrified equine oocytes remain low. Cryopreservation impairs the oocyte developmental potential, which may be reflected in the messenger RNA (mRNA) profile. Therefore, this study aimed to compare the transcriptome profiles of metaphase II equine oocytes vitrified before and after in vitro maturation. To do so, three groups were analyzed with RNA sequencing: (1) fresh in vitro matured oocytes as a control (FR), (2) oocytes vitrified after in vitro maturation (VMAT), and (3) oocytes vitrified immature, warmed, and in vitro matured (VIM). In comparison with fresh oocytes, VIM resulted in 46 differentially expressed (DE) genes (14 upregulated and 32 downregulated), while VMAT showed 36 DE genes (18 in each category). A comparison of VIM vs. VMAT resulted in 44 DE genes (20 upregulated and 24 downregulated). Pathway analyses highlighted cytoskeleton, spindle formation, and calcium and cation ion transport and homeostasis as the main affected pathways in vitrified oocytes. The vitrification of in vitro matured oocytes presented subtle advantages in terms of the mRNA profile over the vitrification of immature oocytes. Therefore, this study provides a new perspective for understanding the impact of vitrification on equine oocytes and can be the basis for further improvements in the efficiency of equine oocyte vitrification.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37108081</pmid><doi>10.3390/ijms24086915</doi><orcidid>https://orcid.org/0000-0002-0415-2744</orcidid><orcidid>https://orcid.org/0000-0001-7043-1007</orcidid><orcidid>https://orcid.org/0000-0002-8205-3725</orcidid><orcidid>https://orcid.org/0000-0002-3307-9048</orcidid><orcidid>https://orcid.org/0000-0003-1806-2368</orcidid><orcidid>https://orcid.org/0000-0001-8815-5485</orcidid><orcidid>https://orcid.org/0000-0002-5305-2133</orcidid><orcidid>https://orcid.org/0000-0001-5010-6311</orcidid><orcidid>https://orcid.org/0000-0001-8777-4065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-04, Vol.24 (8), p.6915
issn 1422-0067
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10138936
source MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Animals
Cryopreservation - methods
Cryopreservation - veterinary
Embryonic development
Genes
Horses - genetics
In Vitro Oocyte Maturation Techniques - methods
Oocytes - metabolism
RNA
RNA sequencing
Transcriptome
Vitrification
title Transcriptomics Reveal Molecular Differences in Equine Oocytes Vitrified before and after In Vitro Maturation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomics%20Reveal%20Molecular%20Differences%20in%20Equine%20Oocytes%20Vitrified%20before%20and%20after%20In%20Vitro%20Maturation&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Angel-Velez,%20Daniel&rft.date=2023-04-07&rft.volume=24&rft.issue=8&rft.spage=6915&rft.pages=6915-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24086915&rft_dat=%3Cgale_pubme%3EA751927928%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807914901&rft_id=info:pmid/37108081&rft_galeid=A751927928&rfr_iscdi=true