Age Group Classification of Dental Radiography without Precise Age Information Using Convolutional Neural Networks

Automatic age estimation using panoramic dental radiographic images is an important procedure for forensics and personal oral healthcare. The accuracies of the age estimation have increased recently with the advances in deep neural networks (DNN), but DNN requires large sizes of the labeled dataset...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Healthcare (Basel) 2023-04, Vol.11 (8), p.1068
Hauptverfasser: Kim, Yu-Rin, Choi, Jae-Hyeok, Ko, Jihyeong, Jung, Young-Jin, Kim, Byeongjun, Nam, Seoul-Hee, Chang, Won-Du
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1068
container_title Healthcare (Basel)
container_volume 11
creator Kim, Yu-Rin
Choi, Jae-Hyeok
Ko, Jihyeong
Jung, Young-Jin
Kim, Byeongjun
Nam, Seoul-Hee
Chang, Won-Du
description Automatic age estimation using panoramic dental radiographic images is an important procedure for forensics and personal oral healthcare. The accuracies of the age estimation have increased recently with the advances in deep neural networks (DNN), but DNN requires large sizes of the labeled dataset which is not always available. This study examined whether a deep neural network is able to estimate tooth ages when precise age information is not given. A deep neural network model was developed and applied to age estimation using an image augmentation technique. A total of 10,023 original images were classified according to age groups (in decades, from the 10s to the 70s). The proposed model was validated using a 10-fold cross-validation technique for precise evaluation, and the accuracies of the predicted tooth ages were calculated by varying the tolerance. The accuracies were 53.846% with a tolerance of ±5 years, 95.121% with ±15 years, and 99.581% with ±25 years, which means the probability for the estimation error to be larger than one age group is 0.419%. The results indicate that artificial intelligence has potential not only in the forensic aspect but also in the clinical aspect of oral care.
doi_str_mv 10.3390/healthcare11081068
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10137502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747445266</galeid><sourcerecordid>A747445266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-ace7ff817ae4aa58ac5803487dccb4e78c99dab258b1a1d08876708c2ca20fe63</originalsourceid><addsrcrecordid>eNptkk1v1DAQhi0EolXpH-CAInHhssVfiZ0TWi1QKlWAED1bs844cUnixU5a9d_jdEtpAftga_w-73hGQ8hLRk-EqOnbDqGfOgsRGaOa0Uo_IYecc7WqqeBPH9wPyHFKlzSvmgktyufkQChGVU35IYnrFovTGOZdsekhJe-8hcmHsQiueI_jBH3xDRof2gi77qa49lMX5qn4GtH6hMWCn40uxGFPXSQ_tsUmjFehn5dI5j_jHG-P6TrEH-kFeeagT3h8dx6Ri48fvm8-rc6_nJ5t1ucrK2s9rcCick4zBSgBSg221FRIrRprtxKVtnXdwJaXesuANVRrVSmqLbfAqcNKHJF3e9_dvB2wsbmY_A2zi36AeGMCePP4ZfSdacOVYZQJVVKeHd7cOcTwc8Y0mcEni30PI4Y5Ga5zF5lUekn2-i_pZZhjrv5WVZVSlIz_UbXQo_G5bzmxXUzNWkklZcmrxevkP6q8Gxy8DSM6n-OPAL4HbAwpRXT3RTJqlmkx_05Lhl49bM898ns2xC9Ba758</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806543512</pqid></control><display><type>article</type><title>Age Group Classification of Dental Radiography without Precise Age Information Using Convolutional Neural Networks</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Kim, Yu-Rin ; Choi, Jae-Hyeok ; Ko, Jihyeong ; Jung, Young-Jin ; Kim, Byeongjun ; Nam, Seoul-Hee ; Chang, Won-Du</creator><creatorcontrib>Kim, Yu-Rin ; Choi, Jae-Hyeok ; Ko, Jihyeong ; Jung, Young-Jin ; Kim, Byeongjun ; Nam, Seoul-Hee ; Chang, Won-Du</creatorcontrib><description>Automatic age estimation using panoramic dental radiographic images is an important procedure for forensics and personal oral healthcare. The accuracies of the age estimation have increased recently with the advances in deep neural networks (DNN), but DNN requires large sizes of the labeled dataset which is not always available. This study examined whether a deep neural network is able to estimate tooth ages when precise age information is not given. A deep neural network model was developed and applied to age estimation using an image augmentation technique. A total of 10,023 original images were classified according to age groups (in decades, from the 10s to the 70s). The proposed model was validated using a 10-fold cross-validation technique for precise evaluation, and the accuracies of the predicted tooth ages were calculated by varying the tolerance. The accuracies were 53.846% with a tolerance of ±5 years, 95.121% with ±15 years, and 99.581% with ±25 years, which means the probability for the estimation error to be larger than one age group is 0.419%. The results indicate that artificial intelligence has potential not only in the forensic aspect but also in the clinical aspect of oral care.</description><identifier>ISSN: 2227-9032</identifier><identifier>EISSN: 2227-9032</identifier><identifier>DOI: 10.3390/healthcare11081068</identifier><identifier>PMID: 37107902</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Age determination (Zoology) ; Age groups ; Analysis ; Artificial intelligence ; Criminal investigations ; Dental jurisprudence ; Dental research ; Dentistry ; Diabetic retinopathy ; DNA methylation ; Forensic sciences ; Machine learning ; Medical care ; Methods ; Neural networks ; Quality management ; Research methodology ; Teeth</subject><ispartof>Healthcare (Basel), 2023-04, Vol.11 (8), p.1068</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-ace7ff817ae4aa58ac5803487dccb4e78c99dab258b1a1d08876708c2ca20fe63</citedby><cites>FETCH-LOGICAL-c498t-ace7ff817ae4aa58ac5803487dccb4e78c99dab258b1a1d08876708c2ca20fe63</cites><orcidid>0000-0002-7437-4211 ; 0000-0003-0169-2865 ; 0000-0001-9529-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137502/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137502/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37107902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yu-Rin</creatorcontrib><creatorcontrib>Choi, Jae-Hyeok</creatorcontrib><creatorcontrib>Ko, Jihyeong</creatorcontrib><creatorcontrib>Jung, Young-Jin</creatorcontrib><creatorcontrib>Kim, Byeongjun</creatorcontrib><creatorcontrib>Nam, Seoul-Hee</creatorcontrib><creatorcontrib>Chang, Won-Du</creatorcontrib><title>Age Group Classification of Dental Radiography without Precise Age Information Using Convolutional Neural Networks</title><title>Healthcare (Basel)</title><addtitle>Healthcare (Basel)</addtitle><description>Automatic age estimation using panoramic dental radiographic images is an important procedure for forensics and personal oral healthcare. The accuracies of the age estimation have increased recently with the advances in deep neural networks (DNN), but DNN requires large sizes of the labeled dataset which is not always available. This study examined whether a deep neural network is able to estimate tooth ages when precise age information is not given. A deep neural network model was developed and applied to age estimation using an image augmentation technique. A total of 10,023 original images were classified according to age groups (in decades, from the 10s to the 70s). The proposed model was validated using a 10-fold cross-validation technique for precise evaluation, and the accuracies of the predicted tooth ages were calculated by varying the tolerance. The accuracies were 53.846% with a tolerance of ±5 years, 95.121% with ±15 years, and 99.581% with ±25 years, which means the probability for the estimation error to be larger than one age group is 0.419%. The results indicate that artificial intelligence has potential not only in the forensic aspect but also in the clinical aspect of oral care.</description><subject>Accuracy</subject><subject>Age determination (Zoology)</subject><subject>Age groups</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Criminal investigations</subject><subject>Dental jurisprudence</subject><subject>Dental research</subject><subject>Dentistry</subject><subject>Diabetic retinopathy</subject><subject>DNA methylation</subject><subject>Forensic sciences</subject><subject>Machine learning</subject><subject>Medical care</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Quality management</subject><subject>Research methodology</subject><subject>Teeth</subject><issn>2227-9032</issn><issn>2227-9032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1v1DAQhi0EolXpH-CAInHhssVfiZ0TWi1QKlWAED1bs844cUnixU5a9d_jdEtpAftga_w-73hGQ8hLRk-EqOnbDqGfOgsRGaOa0Uo_IYecc7WqqeBPH9wPyHFKlzSvmgktyufkQChGVU35IYnrFovTGOZdsekhJe-8hcmHsQiueI_jBH3xDRof2gi77qa49lMX5qn4GtH6hMWCn40uxGFPXSQ_tsUmjFehn5dI5j_jHG-P6TrEH-kFeeagT3h8dx6Ri48fvm8-rc6_nJ5t1ucrK2s9rcCick4zBSgBSg221FRIrRprtxKVtnXdwJaXesuANVRrVSmqLbfAqcNKHJF3e9_dvB2wsbmY_A2zi36AeGMCePP4ZfSdacOVYZQJVVKeHd7cOcTwc8Y0mcEni30PI4Y5Ga5zF5lUekn2-i_pZZhjrv5WVZVSlIz_UbXQo_G5bzmxXUzNWkklZcmrxevkP6q8Gxy8DSM6n-OPAL4HbAwpRXT3RTJqlmkx_05Lhl49bM898ns2xC9Ba758</recordid><startdate>20230408</startdate><enddate>20230408</enddate><creator>Kim, Yu-Rin</creator><creator>Choi, Jae-Hyeok</creator><creator>Ko, Jihyeong</creator><creator>Jung, Young-Jin</creator><creator>Kim, Byeongjun</creator><creator>Nam, Seoul-Hee</creator><creator>Chang, Won-Du</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KB0</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7437-4211</orcidid><orcidid>https://orcid.org/0000-0003-0169-2865</orcidid><orcidid>https://orcid.org/0000-0001-9529-1282</orcidid></search><sort><creationdate>20230408</creationdate><title>Age Group Classification of Dental Radiography without Precise Age Information Using Convolutional Neural Networks</title><author>Kim, Yu-Rin ; Choi, Jae-Hyeok ; Ko, Jihyeong ; Jung, Young-Jin ; Kim, Byeongjun ; Nam, Seoul-Hee ; Chang, Won-Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-ace7ff817ae4aa58ac5803487dccb4e78c99dab258b1a1d08876708c2ca20fe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Age determination (Zoology)</topic><topic>Age groups</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Criminal investigations</topic><topic>Dental jurisprudence</topic><topic>Dental research</topic><topic>Dentistry</topic><topic>Diabetic retinopathy</topic><topic>DNA methylation</topic><topic>Forensic sciences</topic><topic>Machine learning</topic><topic>Medical care</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Quality management</topic><topic>Research methodology</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yu-Rin</creatorcontrib><creatorcontrib>Choi, Jae-Hyeok</creatorcontrib><creatorcontrib>Ko, Jihyeong</creatorcontrib><creatorcontrib>Jung, Young-Jin</creatorcontrib><creatorcontrib>Kim, Byeongjun</creatorcontrib><creatorcontrib>Nam, Seoul-Hee</creatorcontrib><creatorcontrib>Chang, Won-Du</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Healthcare (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yu-Rin</au><au>Choi, Jae-Hyeok</au><au>Ko, Jihyeong</au><au>Jung, Young-Jin</au><au>Kim, Byeongjun</au><au>Nam, Seoul-Hee</au><au>Chang, Won-Du</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age Group Classification of Dental Radiography without Precise Age Information Using Convolutional Neural Networks</atitle><jtitle>Healthcare (Basel)</jtitle><addtitle>Healthcare (Basel)</addtitle><date>2023-04-08</date><risdate>2023</risdate><volume>11</volume><issue>8</issue><spage>1068</spage><pages>1068-</pages><issn>2227-9032</issn><eissn>2227-9032</eissn><abstract>Automatic age estimation using panoramic dental radiographic images is an important procedure for forensics and personal oral healthcare. The accuracies of the age estimation have increased recently with the advances in deep neural networks (DNN), but DNN requires large sizes of the labeled dataset which is not always available. This study examined whether a deep neural network is able to estimate tooth ages when precise age information is not given. A deep neural network model was developed and applied to age estimation using an image augmentation technique. A total of 10,023 original images were classified according to age groups (in decades, from the 10s to the 70s). The proposed model was validated using a 10-fold cross-validation technique for precise evaluation, and the accuracies of the predicted tooth ages were calculated by varying the tolerance. The accuracies were 53.846% with a tolerance of ±5 years, 95.121% with ±15 years, and 99.581% with ±25 years, which means the probability for the estimation error to be larger than one age group is 0.419%. The results indicate that artificial intelligence has potential not only in the forensic aspect but also in the clinical aspect of oral care.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37107902</pmid><doi>10.3390/healthcare11081068</doi><orcidid>https://orcid.org/0000-0002-7437-4211</orcidid><orcidid>https://orcid.org/0000-0003-0169-2865</orcidid><orcidid>https://orcid.org/0000-0001-9529-1282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9032
ispartof Healthcare (Basel), 2023-04, Vol.11 (8), p.1068
issn 2227-9032
2227-9032
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10137502
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Accuracy
Age determination (Zoology)
Age groups
Analysis
Artificial intelligence
Criminal investigations
Dental jurisprudence
Dental research
Dentistry
Diabetic retinopathy
DNA methylation
Forensic sciences
Machine learning
Medical care
Methods
Neural networks
Quality management
Research methodology
Teeth
title Age Group Classification of Dental Radiography without Precise Age Information Using Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age%20Group%20Classification%20of%20Dental%20Radiography%20without%20Precise%20Age%20Information%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=Healthcare%20(Basel)&rft.au=Kim,%20Yu-Rin&rft.date=2023-04-08&rft.volume=11&rft.issue=8&rft.spage=1068&rft.pages=1068-&rft.issn=2227-9032&rft.eissn=2227-9032&rft_id=info:doi/10.3390/healthcare11081068&rft_dat=%3Cgale_pubme%3EA747445266%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806543512&rft_id=info:pmid/37107902&rft_galeid=A747445266&rfr_iscdi=true