An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys )

Although most mammals heal injured tissues and organs with scarring, spiny mice ( ) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-04, Vol.9 (17), p.eadf2331-eadf2331
Hauptverfasser: Tomasso, Antonio, Koopmans, Tim, Lijnzaad, Philip, Bartscherer, Kerstin, Seifert, Ashley W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eadf2331
container_issue 17
container_start_page eadf2331
container_title Science advances
container_volume 9
creator Tomasso, Antonio
Koopmans, Tim
Lijnzaad, Philip
Bartscherer, Kerstin
Seifert, Ashley W
description Although most mammals heal injured tissues and organs with scarring, spiny mice ( ) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring ( ) and regenerating ( ) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.
doi_str_mv 10.1126/sciadv.adf2331
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10132760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808585307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-3566300b9dc9ac1e7d0e3fd3012d295b0c4c3c40d0ceb7450bd4804fffb940db3</originalsourceid><addsrcrecordid>eNpVUUtLNDEQDPKJinr1KDn6HWbtTCbzOMkivlAQRM8hk_SskZlkTGaV9dcb2VX01E11dfWjCDliMGMsL0-jtsq8zZTpcs7ZFtnLeSWyXBT1v1_5LjmM8QUAWFGWgjU7ZJdXqV2IZo_YuaMXD7eZwRGdQTfRwfeol70KNL7bST9T5Sa18M5-YKSdbYOPNibQ0DH4wU8JDbhAh0FN1jtqHY2jdSs6WI30hM61H1aR_j8g253qIx5u4j55urx4PL_O7u6vbs7nd5nmDZsyLsqSA7SN0Y3SDCsDyDvDgeUmb0QLutBcF2BAY1sVAlpT1FB0Xdc2CW35Pjlb647LdkCj001B9XIMdlBhJb2y8m_F2We58G-SAeN5VUJSONkoBP-6xDjJwUaNfa8c-mWUeQ21qAWHKlFna6pOb4kBu585DOSXR3Ltkdx4lBqOf2_3Q_92hH8CT6GRNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808585307</pqid></control><display><type>article</type><title>An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys )</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Tomasso, Antonio ; Koopmans, Tim ; Lijnzaad, Philip ; Bartscherer, Kerstin ; Seifert, Ashley W</creator><creatorcontrib>Tomasso, Antonio ; Koopmans, Tim ; Lijnzaad, Philip ; Bartscherer, Kerstin ; Seifert, Ashley W</creatorcontrib><description>Although most mammals heal injured tissues and organs with scarring, spiny mice ( ) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring ( ) and regenerating ( ) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adf2331</identifier><identifier>PMID: 37126559</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Biomedicine and Life Sciences ; Cicatrix - pathology ; Developmental Biology ; Extracellular Signal-Regulated MAP Kinases ; Fibrosis ; Mammals ; Murinae ; Regeneration ; SciAdv r-articles</subject><ispartof>Science advances, 2023-04, Vol.9 (17), p.eadf2331-eadf2331</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-3566300b9dc9ac1e7d0e3fd3012d295b0c4c3c40d0ceb7450bd4804fffb940db3</citedby><cites>FETCH-LOGICAL-c391t-3566300b9dc9ac1e7d0e3fd3012d295b0c4c3c40d0ceb7450bd4804fffb940db3</cites><orcidid>0000-0001-8192-3285 ; 0000-0002-7535-583X ; 0000-0001-6576-3664 ; 0000-0003-2869-1969 ; 0000-0002-3070-4389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132760/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37126559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomasso, Antonio</creatorcontrib><creatorcontrib>Koopmans, Tim</creatorcontrib><creatorcontrib>Lijnzaad, Philip</creatorcontrib><creatorcontrib>Bartscherer, Kerstin</creatorcontrib><creatorcontrib>Seifert, Ashley W</creatorcontrib><title>An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys )</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Although most mammals heal injured tissues and organs with scarring, spiny mice ( ) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring ( ) and regenerating ( ) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.</description><subject>Animals</subject><subject>Biomedicine and Life Sciences</subject><subject>Cicatrix - pathology</subject><subject>Developmental Biology</subject><subject>Extracellular Signal-Regulated MAP Kinases</subject><subject>Fibrosis</subject><subject>Mammals</subject><subject>Murinae</subject><subject>Regeneration</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtLNDEQDPKJinr1KDn6HWbtTCbzOMkivlAQRM8hk_SskZlkTGaV9dcb2VX01E11dfWjCDliMGMsL0-jtsq8zZTpcs7ZFtnLeSWyXBT1v1_5LjmM8QUAWFGWgjU7ZJdXqV2IZo_YuaMXD7eZwRGdQTfRwfeol70KNL7bST9T5Sa18M5-YKSdbYOPNibQ0DH4wU8JDbhAh0FN1jtqHY2jdSs6WI30hM61H1aR_j8g253qIx5u4j55urx4PL_O7u6vbs7nd5nmDZsyLsqSA7SN0Y3SDCsDyDvDgeUmb0QLutBcF2BAY1sVAlpT1FB0Xdc2CW35Pjlb647LdkCj001B9XIMdlBhJb2y8m_F2We58G-SAeN5VUJSONkoBP-6xDjJwUaNfa8c-mWUeQ21qAWHKlFna6pOb4kBu585DOSXR3Ltkdx4lBqOf2_3Q_92hH8CT6GRNA</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Tomasso, Antonio</creator><creator>Koopmans, Tim</creator><creator>Lijnzaad, Philip</creator><creator>Bartscherer, Kerstin</creator><creator>Seifert, Ashley W</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8192-3285</orcidid><orcidid>https://orcid.org/0000-0002-7535-583X</orcidid><orcidid>https://orcid.org/0000-0001-6576-3664</orcidid><orcidid>https://orcid.org/0000-0003-2869-1969</orcidid><orcidid>https://orcid.org/0000-0002-3070-4389</orcidid></search><sort><creationdate>20230428</creationdate><title>An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys )</title><author>Tomasso, Antonio ; Koopmans, Tim ; Lijnzaad, Philip ; Bartscherer, Kerstin ; Seifert, Ashley W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-3566300b9dc9ac1e7d0e3fd3012d295b0c4c3c40d0ceb7450bd4804fffb940db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biomedicine and Life Sciences</topic><topic>Cicatrix - pathology</topic><topic>Developmental Biology</topic><topic>Extracellular Signal-Regulated MAP Kinases</topic><topic>Fibrosis</topic><topic>Mammals</topic><topic>Murinae</topic><topic>Regeneration</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomasso, Antonio</creatorcontrib><creatorcontrib>Koopmans, Tim</creatorcontrib><creatorcontrib>Lijnzaad, Philip</creatorcontrib><creatorcontrib>Bartscherer, Kerstin</creatorcontrib><creatorcontrib>Seifert, Ashley W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomasso, Antonio</au><au>Koopmans, Tim</au><au>Lijnzaad, Philip</au><au>Bartscherer, Kerstin</au><au>Seifert, Ashley W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys )</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-04-28</date><risdate>2023</risdate><volume>9</volume><issue>17</issue><spage>eadf2331</spage><epage>eadf2331</epage><pages>eadf2331-eadf2331</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Although most mammals heal injured tissues and organs with scarring, spiny mice ( ) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring ( ) and regenerating ( ) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37126559</pmid><doi>10.1126/sciadv.adf2331</doi><orcidid>https://orcid.org/0000-0001-8192-3285</orcidid><orcidid>https://orcid.org/0000-0002-7535-583X</orcidid><orcidid>https://orcid.org/0000-0001-6576-3664</orcidid><orcidid>https://orcid.org/0000-0003-2869-1969</orcidid><orcidid>https://orcid.org/0000-0002-3070-4389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2023-04, Vol.9 (17), p.eadf2331-eadf2331
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10132760
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Biomedicine and Life Sciences
Cicatrix - pathology
Developmental Biology
Extracellular Signal-Regulated MAP Kinases
Fibrosis
Mammals
Murinae
Regeneration
SciAdv r-articles
title An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys )
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ERK-dependent%20molecular%20switch%20antagonizes%20fibrosis%20and%20promotes%20regeneration%20in%20spiny%20mice%20(%20Acomys%20)&rft.jtitle=Science%20advances&rft.au=Tomasso,%20Antonio&rft.date=2023-04-28&rft.volume=9&rft.issue=17&rft.spage=eadf2331&rft.epage=eadf2331&rft.pages=eadf2331-eadf2331&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adf2331&rft_dat=%3Cproquest_pubme%3E2808585307%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808585307&rft_id=info:pmid/37126559&rfr_iscdi=true