Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alte...
Gespeichert in:
Veröffentlicht in: | Journal of computational biology 2023-04, Vol.30 (4), p.518-537 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | 4 |
container_start_page | 518 |
container_title | Journal of computational biology |
container_volume | 30 |
creator | Moravec, Jiří C Lanfear, Robert Spector, David L Diermeier, Sarah D Gavryushkin, Alex |
description | Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alterations and single nucleotide variants (SNVs). Single-cell RNA sequencing (scRNA-seq) is commonly applied to explore differential gene expression of cancer cells throughout tumor progression. The method exacerbates the single-cell sequencing problem of low yield per cell with uneven expression levels. This accounts for low and uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In this article, we demonstrate for the first time that scRNA-seq data contain sufficient evolutionary signal and can also be utilized in phylogenetic analyses. We explore and compare results of such analyses based on both expression levels and SNVs called from scRNA-seq data. Both techniques are shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal composition of a tumor. Both standardized expression values and SNVs appear to be equally capable of reconstructing a similar pattern of phylogenetic relationship. This pattern is stable even when phylogenetic uncertainty is taken in account. Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further research is required to refine and improve these approaches to capture the full picture of somatic evolutionary dynamics in cancer. |
doi_str_mv | 10.1089/cmb.2022.0357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10125402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753314391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5a6aaa5a6d0244dbe5250243eeac8937317377717267669212733fd2fb5a05013</originalsourceid><addsrcrecordid>eNpVkEtPwzAQhC0EoqVw5Ipy5JLiR2wn4oCq8pQqQLScLSdxUiPHbuMUqf8eRy0VXHZH2tHs7gfAJYJjBNPspmjyMYYYjyGh_AgMEaU8Thljx3_0AJx5_wUhIgzyUzAgLOE0w2wIbhfKd9rWUeXa6H25Na5WVnW6iOa6ttJE2gZla6PiqTIm-nidxHO1ju5lJ8_BSSWNVxf7PgKfjw-L6XM8e3t6mU5mcUHStIupZFLKUEuIk6TMFcU0KKKULNKMcII44ZwjjhlnLMMIc0KqElc5lZCGm0fgbpe72uSNKgtlu1YasWp1I9utcFKL_xOrl6J23wJBhGkCcUi43ie0br0JH4tG-yL8I61yGy8wp4SghGT9snhnLVrnfauqwx4ERU9cBOKiJy564sF_9fe4g_sXMfkBDiZ6Yw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753314391</pqid></control><display><type>article</type><title>Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Moravec, Jiří C ; Lanfear, Robert ; Spector, David L ; Diermeier, Sarah D ; Gavryushkin, Alex</creator><creatorcontrib>Moravec, Jiří C ; Lanfear, Robert ; Spector, David L ; Diermeier, Sarah D ; Gavryushkin, Alex</creatorcontrib><description>Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alterations and single nucleotide variants (SNVs). Single-cell RNA sequencing (scRNA-seq) is commonly applied to explore differential gene expression of cancer cells throughout tumor progression. The method exacerbates the single-cell sequencing problem of low yield per cell with uneven expression levels. This accounts for low and uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In this article, we demonstrate for the first time that scRNA-seq data contain sufficient evolutionary signal and can also be utilized in phylogenetic analyses. We explore and compare results of such analyses based on both expression levels and SNVs called from scRNA-seq data. Both techniques are shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal composition of a tumor. Both standardized expression values and SNVs appear to be equally capable of reconstructing a similar pattern of phylogenetic relationship. This pattern is stable even when phylogenetic uncertainty is taken in account. Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further research is required to refine and improve these approaches to capture the full picture of somatic evolutionary dynamics in cancer.</description><identifier>ISSN: 1557-8666</identifier><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2022.0357</identifier><identifier>PMID: 36475926</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc., publishers</publisher><subject>Gene Expression Profiling - methods ; Humans ; Neoplasms - genetics ; Phylogeny ; Sequence Analysis, RNA - methods ; Single-Cell Analysis - methods ; Single-Cell Gene Expression Analysis</subject><ispartof>Journal of computational biology, 2023-04, Vol.30 (4), p.518-537</ispartof><rights>Ji‣í C. Moravec et al., 2023. Published by Mary Ann Liebert, Inc. 2023 Jiří C. Moravec et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5a6aaa5a6d0244dbe5250243eeac8937317377717267669212733fd2fb5a05013</citedby><cites>FETCH-LOGICAL-c388t-5a6aaa5a6d0244dbe5250243eeac8937317377717267669212733fd2fb5a05013</cites><orcidid>0000-0001-6299-8249 ; 0000-0002-3651-1924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36475926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moravec, Jiří C</creatorcontrib><creatorcontrib>Lanfear, Robert</creatorcontrib><creatorcontrib>Spector, David L</creatorcontrib><creatorcontrib>Diermeier, Sarah D</creatorcontrib><creatorcontrib>Gavryushkin, Alex</creatorcontrib><title>Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alterations and single nucleotide variants (SNVs). Single-cell RNA sequencing (scRNA-seq) is commonly applied to explore differential gene expression of cancer cells throughout tumor progression. The method exacerbates the single-cell sequencing problem of low yield per cell with uneven expression levels. This accounts for low and uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In this article, we demonstrate for the first time that scRNA-seq data contain sufficient evolutionary signal and can also be utilized in phylogenetic analyses. We explore and compare results of such analyses based on both expression levels and SNVs called from scRNA-seq data. Both techniques are shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal composition of a tumor. Both standardized expression values and SNVs appear to be equally capable of reconstructing a similar pattern of phylogenetic relationship. This pattern is stable even when phylogenetic uncertainty is taken in account. Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further research is required to refine and improve these approaches to capture the full picture of somatic evolutionary dynamics in cancer.</description><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Neoplasms - genetics</subject><subject>Phylogeny</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>Single-Cell Gene Expression Analysis</subject><issn>1557-8666</issn><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtPwzAQhC0EoqVw5Ipy5JLiR2wn4oCq8pQqQLScLSdxUiPHbuMUqf8eRy0VXHZH2tHs7gfAJYJjBNPspmjyMYYYjyGh_AgMEaU8Thljx3_0AJx5_wUhIgzyUzAgLOE0w2wIbhfKd9rWUeXa6H25Na5WVnW6iOa6ttJE2gZla6PiqTIm-nidxHO1ju5lJ8_BSSWNVxf7PgKfjw-L6XM8e3t6mU5mcUHStIupZFLKUEuIk6TMFcU0KKKULNKMcII44ZwjjhlnLMMIc0KqElc5lZCGm0fgbpe72uSNKgtlu1YasWp1I9utcFKL_xOrl6J23wJBhGkCcUi43ie0br0JH4tG-yL8I61yGy8wp4SghGT9snhnLVrnfauqwx4ERU9cBOKiJy564sF_9fe4g_sXMfkBDiZ6Yw</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Moravec, Jiří C</creator><creator>Lanfear, Robert</creator><creator>Spector, David L</creator><creator>Diermeier, Sarah D</creator><creator>Gavryushkin, Alex</creator><general>Mary Ann Liebert, Inc., publishers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6299-8249</orcidid><orcidid>https://orcid.org/0000-0002-3651-1924</orcidid></search><sort><creationdate>202304</creationdate><title>Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data</title><author>Moravec, Jiří C ; Lanfear, Robert ; Spector, David L ; Diermeier, Sarah D ; Gavryushkin, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5a6aaa5a6d0244dbe5250243eeac8937317377717267669212733fd2fb5a05013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Neoplasms - genetics</topic><topic>Phylogeny</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>Single-Cell Gene Expression Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moravec, Jiří C</creatorcontrib><creatorcontrib>Lanfear, Robert</creatorcontrib><creatorcontrib>Spector, David L</creatorcontrib><creatorcontrib>Diermeier, Sarah D</creatorcontrib><creatorcontrib>Gavryushkin, Alex</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moravec, Jiří C</au><au>Lanfear, Robert</au><au>Spector, David L</au><au>Diermeier, Sarah D</au><au>Gavryushkin, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>518</spage><epage>537</epage><pages>518-537</pages><issn>1557-8666</issn><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alterations and single nucleotide variants (SNVs). Single-cell RNA sequencing (scRNA-seq) is commonly applied to explore differential gene expression of cancer cells throughout tumor progression. The method exacerbates the single-cell sequencing problem of low yield per cell with uneven expression levels. This accounts for low and uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In this article, we demonstrate for the first time that scRNA-seq data contain sufficient evolutionary signal and can also be utilized in phylogenetic analyses. We explore and compare results of such analyses based on both expression levels and SNVs called from scRNA-seq data. Both techniques are shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal composition of a tumor. Both standardized expression values and SNVs appear to be equally capable of reconstructing a similar pattern of phylogenetic relationship. This pattern is stable even when phylogenetic uncertainty is taken in account. Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further research is required to refine and improve these approaches to capture the full picture of somatic evolutionary dynamics in cancer.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc., publishers</pub><pmid>36475926</pmid><doi>10.1089/cmb.2022.0357</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6299-8249</orcidid><orcidid>https://orcid.org/0000-0002-3651-1924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-8666 |
ispartof | Journal of computational biology, 2023-04, Vol.30 (4), p.518-537 |
issn | 1557-8666 1066-5277 1557-8666 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10125402 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Gene Expression Profiling - methods Humans Neoplasms - genetics Phylogeny Sequence Analysis, RNA - methods Single-Cell Analysis - methods Single-Cell Gene Expression Analysis |
title | Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20Phylogenetic%20Signal%20in%20Single-Cell%20RNA-Seq%20Data&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Moravec,%20Ji%C5%99%C3%AD%20C&rft.date=2023-04&rft.volume=30&rft.issue=4&rft.spage=518&rft.epage=537&rft.pages=518-537&rft.issn=1557-8666&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2022.0357&rft_dat=%3Cproquest_pubme%3E2753314391%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753314391&rft_id=info:pmid/36475926&rfr_iscdi=true |