PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates

Abstract We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2023-04, Vol.51 (7), p.3185-3204
Hauptverfasser: Mathavarajah, Sabateeshan, Vergunst, Kathleen L, Habib, Elias B, Williams, Shelby K, He, Raymond, Maliougina, Maria, Park, Mika, Salsman, Jayme, Roy, Stéphane, Braasch, Ingo, Roger, Andrew J, Langelaan, David N, Dellaire, Graham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3204
container_issue 7
container_start_page 3185
container_title Nucleic acids research
container_volume 51
creator Mathavarajah, Sabateeshan
Vergunst, Kathleen L
Habib, Elias B
Williams, Shelby K
He, Raymond
Maliougina, Maria
Park, Mika
Salsman, Jayme
Roy, Stéphane
Braasch, Ingo
Roger, Andrew J
Langelaan, David N
Dellaire, Graham
description Abstract We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.
doi_str_mv 10.1093/nar/gkad152
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkad152</oup_id><sourcerecordid>2786514792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9c8bb2f858710858e43a6adac995223ad30f3f468745e08994c3011b0c8bca593</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EomU5cUc5ISQU8NhOGp8QqtikIjjA2XKcCaRN7WInLP8eo5YKLlxmRvLnN89-hBwAPQUq-ZnV_ux5pivI2AYZAs9ZKmTONsmQcpqlQEUxIDshTCkFAZnYJgOeS2BUsiGZPNxNEm2rJPa0bWaY4IezvWlRBwyJx9D5xnRx6LzrvLZh4YKzIWlsMtXvWCVv6Dssve4w7JGtWrcB91d9lzxdXT6Ob9LJ_fXt-GKSGgG8S6UpypLVRVaMgMaKgutcV9pImTHGdcVpzWuRFyORIS2kFIZTgJLGe0Znku-S86Xuoi_nWBm00VmrFr6Za_-pnG7U3xPbvKhn96aAAuPARFQ4Xil499rHR6p5Ewy2rbbo-qDYqMgzECPJInqyRI13IXis13uAqu8AVAxArQKI9OFva2v258cjcLQEXL_4V-kL7leQXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786514792</pqid></control><display><type>article</type><title>PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mathavarajah, Sabateeshan ; Vergunst, Kathleen L ; Habib, Elias B ; Williams, Shelby K ; He, Raymond ; Maliougina, Maria ; Park, Mika ; Salsman, Jayme ; Roy, Stéphane ; Braasch, Ingo ; Roger, Andrew J ; Langelaan, David N ; Dellaire, Graham</creator><creatorcontrib>Mathavarajah, Sabateeshan ; Vergunst, Kathleen L ; Habib, Elias B ; Williams, Shelby K ; He, Raymond ; Maliougina, Maria ; Park, Mika ; Salsman, Jayme ; Roy, Stéphane ; Braasch, Ingo ; Roger, Andrew J ; Langelaan, David N ; Dellaire, Graham</creatorcontrib><description>Abstract We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad152</identifier><identifier>PMID: 36912092</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Genome Integrity, Repair and ; Gnathostoma - enzymology ; Gnathostoma - genetics ; Gnathostoma - metabolism ; Humans ; Mammals - genetics ; Promyelocytic Leukemia Protein - genetics ; Promyelocytic Leukemia Protein - metabolism ; Protein Isoforms - genetics ; Retroelements - genetics ; Transcription Factors - metabolism ; Zebrafish - genetics ; Zebrafish - metabolism</subject><ispartof>Nucleic acids research, 2023-04, Vol.51 (7), p.3185-3204</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9c8bb2f858710858e43a6adac995223ad30f3f468745e08994c3011b0c8bca593</citedby><cites>FETCH-LOGICAL-c413t-9c8bb2f858710858e43a6adac995223ad30f3f468745e08994c3011b0c8bca593</cites><orcidid>0000-0001-7005-5208 ; 0000-0001-9592-3075 ; 0000-0002-3466-6316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36912092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathavarajah, Sabateeshan</creatorcontrib><creatorcontrib>Vergunst, Kathleen L</creatorcontrib><creatorcontrib>Habib, Elias B</creatorcontrib><creatorcontrib>Williams, Shelby K</creatorcontrib><creatorcontrib>He, Raymond</creatorcontrib><creatorcontrib>Maliougina, Maria</creatorcontrib><creatorcontrib>Park, Mika</creatorcontrib><creatorcontrib>Salsman, Jayme</creatorcontrib><creatorcontrib>Roy, Stéphane</creatorcontrib><creatorcontrib>Braasch, Ingo</creatorcontrib><creatorcontrib>Roger, Andrew J</creatorcontrib><creatorcontrib>Langelaan, David N</creatorcontrib><creatorcontrib>Dellaire, Graham</creatorcontrib><title>PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.</description><subject>Animals</subject><subject>Genome Integrity, Repair and</subject><subject>Gnathostoma - enzymology</subject><subject>Gnathostoma - genetics</subject><subject>Gnathostoma - metabolism</subject><subject>Humans</subject><subject>Mammals - genetics</subject><subject>Promyelocytic Leukemia Protein - genetics</subject><subject>Promyelocytic Leukemia Protein - metabolism</subject><subject>Protein Isoforms - genetics</subject><subject>Retroelements - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlPwzAQhS0EomU5cUc5ISQU8NhOGp8QqtikIjjA2XKcCaRN7WInLP8eo5YKLlxmRvLnN89-hBwAPQUq-ZnV_ux5pivI2AYZAs9ZKmTONsmQcpqlQEUxIDshTCkFAZnYJgOeS2BUsiGZPNxNEm2rJPa0bWaY4IezvWlRBwyJx9D5xnRx6LzrvLZh4YKzIWlsMtXvWCVv6Dssve4w7JGtWrcB91d9lzxdXT6Ob9LJ_fXt-GKSGgG8S6UpypLVRVaMgMaKgutcV9pImTHGdcVpzWuRFyORIS2kFIZTgJLGe0Znku-S86Xuoi_nWBm00VmrFr6Za_-pnG7U3xPbvKhn96aAAuPARFQ4Xil499rHR6p5Ewy2rbbo-qDYqMgzECPJInqyRI13IXis13uAqu8AVAxArQKI9OFva2v258cjcLQEXL_4V-kL7leQXw</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Mathavarajah, Sabateeshan</creator><creator>Vergunst, Kathleen L</creator><creator>Habib, Elias B</creator><creator>Williams, Shelby K</creator><creator>He, Raymond</creator><creator>Maliougina, Maria</creator><creator>Park, Mika</creator><creator>Salsman, Jayme</creator><creator>Roy, Stéphane</creator><creator>Braasch, Ingo</creator><creator>Roger, Andrew J</creator><creator>Langelaan, David N</creator><creator>Dellaire, Graham</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7005-5208</orcidid><orcidid>https://orcid.org/0000-0001-9592-3075</orcidid><orcidid>https://orcid.org/0000-0002-3466-6316</orcidid></search><sort><creationdate>20230424</creationdate><title>PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates</title><author>Mathavarajah, Sabateeshan ; Vergunst, Kathleen L ; Habib, Elias B ; Williams, Shelby K ; He, Raymond ; Maliougina, Maria ; Park, Mika ; Salsman, Jayme ; Roy, Stéphane ; Braasch, Ingo ; Roger, Andrew J ; Langelaan, David N ; Dellaire, Graham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9c8bb2f858710858e43a6adac995223ad30f3f468745e08994c3011b0c8bca593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Genome Integrity, Repair and</topic><topic>Gnathostoma - enzymology</topic><topic>Gnathostoma - genetics</topic><topic>Gnathostoma - metabolism</topic><topic>Humans</topic><topic>Mammals - genetics</topic><topic>Promyelocytic Leukemia Protein - genetics</topic><topic>Promyelocytic Leukemia Protein - metabolism</topic><topic>Protein Isoforms - genetics</topic><topic>Retroelements - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathavarajah, Sabateeshan</creatorcontrib><creatorcontrib>Vergunst, Kathleen L</creatorcontrib><creatorcontrib>Habib, Elias B</creatorcontrib><creatorcontrib>Williams, Shelby K</creatorcontrib><creatorcontrib>He, Raymond</creatorcontrib><creatorcontrib>Maliougina, Maria</creatorcontrib><creatorcontrib>Park, Mika</creatorcontrib><creatorcontrib>Salsman, Jayme</creatorcontrib><creatorcontrib>Roy, Stéphane</creatorcontrib><creatorcontrib>Braasch, Ingo</creatorcontrib><creatorcontrib>Roger, Andrew J</creatorcontrib><creatorcontrib>Langelaan, David N</creatorcontrib><creatorcontrib>Dellaire, Graham</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathavarajah, Sabateeshan</au><au>Vergunst, Kathleen L</au><au>Habib, Elias B</au><au>Williams, Shelby K</au><au>He, Raymond</au><au>Maliougina, Maria</au><au>Park, Mika</au><au>Salsman, Jayme</au><au>Roy, Stéphane</au><au>Braasch, Ingo</au><au>Roger, Andrew J</au><au>Langelaan, David N</au><au>Dellaire, Graham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>51</volume><issue>7</issue><spage>3185</spage><epage>3204</epage><pages>3185-3204</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36912092</pmid><doi>10.1093/nar/gkad152</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7005-5208</orcidid><orcidid>https://orcid.org/0000-0001-9592-3075</orcidid><orcidid>https://orcid.org/0000-0002-3466-6316</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2023-04, Vol.51 (7), p.3185-3204
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123124
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Genome Integrity, Repair and
Gnathostoma - enzymology
Gnathostoma - genetics
Gnathostoma - metabolism
Humans
Mammals - genetics
Promyelocytic Leukemia Protein - genetics
Promyelocytic Leukemia Protein - metabolism
Protein Isoforms - genetics
Retroelements - genetics
Transcription Factors - metabolism
Zebrafish - genetics
Zebrafish - metabolism
title PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PML%20and%20PML-like%20exonucleases%20restrict%20retrotransposons%20in%20jawed%20vertebrates&rft.jtitle=Nucleic%20acids%20research&rft.au=Mathavarajah,%20Sabateeshan&rft.date=2023-04-24&rft.volume=51&rft.issue=7&rft.spage=3185&rft.epage=3204&rft.pages=3185-3204&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad152&rft_dat=%3Cproquest_pubme%3E2786514792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786514792&rft_id=info:pmid/36912092&rft_oup_id=10.1093/nar/gkad152&rfr_iscdi=true