PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates
Abstract We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found t...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2023-04, Vol.51 (7), p.3185-3204 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3204 |
---|---|
container_issue | 7 |
container_start_page | 3185 |
container_title | Nucleic acids research |
container_volume | 51 |
creator | Mathavarajah, Sabateeshan Vergunst, Kathleen L Habib, Elias B Williams, Shelby K He, Raymond Maliougina, Maria Park, Mika Salsman, Jayme Roy, Stéphane Braasch, Ingo Roger, Andrew J Langelaan, David N Dellaire, Graham |
description | Abstract
We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies. |
doi_str_mv | 10.1093/nar/gkad152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkad152</oup_id><sourcerecordid>2786514792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9c8bb2f858710858e43a6adac995223ad30f3f468745e08994c3011b0c8bca593</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EomU5cUc5ISQU8NhOGp8QqtikIjjA2XKcCaRN7WInLP8eo5YKLlxmRvLnN89-hBwAPQUq-ZnV_ux5pivI2AYZAs9ZKmTONsmQcpqlQEUxIDshTCkFAZnYJgOeS2BUsiGZPNxNEm2rJPa0bWaY4IezvWlRBwyJx9D5xnRx6LzrvLZh4YKzIWlsMtXvWCVv6Dssve4w7JGtWrcB91d9lzxdXT6Ob9LJ_fXt-GKSGgG8S6UpypLVRVaMgMaKgutcV9pImTHGdcVpzWuRFyORIS2kFIZTgJLGe0Znku-S86Xuoi_nWBm00VmrFr6Za_-pnG7U3xPbvKhn96aAAuPARFQ4Xil499rHR6p5Ewy2rbbo-qDYqMgzECPJInqyRI13IXis13uAqu8AVAxArQKI9OFva2v258cjcLQEXL_4V-kL7leQXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786514792</pqid></control><display><type>article</type><title>PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mathavarajah, Sabateeshan ; Vergunst, Kathleen L ; Habib, Elias B ; Williams, Shelby K ; He, Raymond ; Maliougina, Maria ; Park, Mika ; Salsman, Jayme ; Roy, Stéphane ; Braasch, Ingo ; Roger, Andrew J ; Langelaan, David N ; Dellaire, Graham</creator><creatorcontrib>Mathavarajah, Sabateeshan ; Vergunst, Kathleen L ; Habib, Elias B ; Williams, Shelby K ; He, Raymond ; Maliougina, Maria ; Park, Mika ; Salsman, Jayme ; Roy, Stéphane ; Braasch, Ingo ; Roger, Andrew J ; Langelaan, David N ; Dellaire, Graham</creatorcontrib><description>Abstract
We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad152</identifier><identifier>PMID: 36912092</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Genome Integrity, Repair and ; Gnathostoma - enzymology ; Gnathostoma - genetics ; Gnathostoma - metabolism ; Humans ; Mammals - genetics ; Promyelocytic Leukemia Protein - genetics ; Promyelocytic Leukemia Protein - metabolism ; Protein Isoforms - genetics ; Retroelements - genetics ; Transcription Factors - metabolism ; Zebrafish - genetics ; Zebrafish - metabolism</subject><ispartof>Nucleic acids research, 2023-04, Vol.51 (7), p.3185-3204</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9c8bb2f858710858e43a6adac995223ad30f3f468745e08994c3011b0c8bca593</citedby><cites>FETCH-LOGICAL-c413t-9c8bb2f858710858e43a6adac995223ad30f3f468745e08994c3011b0c8bca593</cites><orcidid>0000-0001-7005-5208 ; 0000-0001-9592-3075 ; 0000-0002-3466-6316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36912092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathavarajah, Sabateeshan</creatorcontrib><creatorcontrib>Vergunst, Kathleen L</creatorcontrib><creatorcontrib>Habib, Elias B</creatorcontrib><creatorcontrib>Williams, Shelby K</creatorcontrib><creatorcontrib>He, Raymond</creatorcontrib><creatorcontrib>Maliougina, Maria</creatorcontrib><creatorcontrib>Park, Mika</creatorcontrib><creatorcontrib>Salsman, Jayme</creatorcontrib><creatorcontrib>Roy, Stéphane</creatorcontrib><creatorcontrib>Braasch, Ingo</creatorcontrib><creatorcontrib>Roger, Andrew J</creatorcontrib><creatorcontrib>Langelaan, David N</creatorcontrib><creatorcontrib>Dellaire, Graham</creatorcontrib><title>PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.</description><subject>Animals</subject><subject>Genome Integrity, Repair and</subject><subject>Gnathostoma - enzymology</subject><subject>Gnathostoma - genetics</subject><subject>Gnathostoma - metabolism</subject><subject>Humans</subject><subject>Mammals - genetics</subject><subject>Promyelocytic Leukemia Protein - genetics</subject><subject>Promyelocytic Leukemia Protein - metabolism</subject><subject>Protein Isoforms - genetics</subject><subject>Retroelements - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlPwzAQhS0EomU5cUc5ISQU8NhOGp8QqtikIjjA2XKcCaRN7WInLP8eo5YKLlxmRvLnN89-hBwAPQUq-ZnV_ux5pivI2AYZAs9ZKmTONsmQcpqlQEUxIDshTCkFAZnYJgOeS2BUsiGZPNxNEm2rJPa0bWaY4IezvWlRBwyJx9D5xnRx6LzrvLZh4YKzIWlsMtXvWCVv6Dssve4w7JGtWrcB91d9lzxdXT6Ob9LJ_fXt-GKSGgG8S6UpypLVRVaMgMaKgutcV9pImTHGdcVpzWuRFyORIS2kFIZTgJLGe0Znku-S86Xuoi_nWBm00VmrFr6Za_-pnG7U3xPbvKhn96aAAuPARFQ4Xil499rHR6p5Ewy2rbbo-qDYqMgzECPJInqyRI13IXis13uAqu8AVAxArQKI9OFva2v258cjcLQEXL_4V-kL7leQXw</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Mathavarajah, Sabateeshan</creator><creator>Vergunst, Kathleen L</creator><creator>Habib, Elias B</creator><creator>Williams, Shelby K</creator><creator>He, Raymond</creator><creator>Maliougina, Maria</creator><creator>Park, Mika</creator><creator>Salsman, Jayme</creator><creator>Roy, Stéphane</creator><creator>Braasch, Ingo</creator><creator>Roger, Andrew J</creator><creator>Langelaan, David N</creator><creator>Dellaire, Graham</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7005-5208</orcidid><orcidid>https://orcid.org/0000-0001-9592-3075</orcidid><orcidid>https://orcid.org/0000-0002-3466-6316</orcidid></search><sort><creationdate>20230424</creationdate><title>PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates</title><author>Mathavarajah, Sabateeshan ; Vergunst, Kathleen L ; Habib, Elias B ; Williams, Shelby K ; He, Raymond ; Maliougina, Maria ; Park, Mika ; Salsman, Jayme ; Roy, Stéphane ; Braasch, Ingo ; Roger, Andrew J ; Langelaan, David N ; Dellaire, Graham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9c8bb2f858710858e43a6adac995223ad30f3f468745e08994c3011b0c8bca593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Genome Integrity, Repair and</topic><topic>Gnathostoma - enzymology</topic><topic>Gnathostoma - genetics</topic><topic>Gnathostoma - metabolism</topic><topic>Humans</topic><topic>Mammals - genetics</topic><topic>Promyelocytic Leukemia Protein - genetics</topic><topic>Promyelocytic Leukemia Protein - metabolism</topic><topic>Protein Isoforms - genetics</topic><topic>Retroelements - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathavarajah, Sabateeshan</creatorcontrib><creatorcontrib>Vergunst, Kathleen L</creatorcontrib><creatorcontrib>Habib, Elias B</creatorcontrib><creatorcontrib>Williams, Shelby K</creatorcontrib><creatorcontrib>He, Raymond</creatorcontrib><creatorcontrib>Maliougina, Maria</creatorcontrib><creatorcontrib>Park, Mika</creatorcontrib><creatorcontrib>Salsman, Jayme</creatorcontrib><creatorcontrib>Roy, Stéphane</creatorcontrib><creatorcontrib>Braasch, Ingo</creatorcontrib><creatorcontrib>Roger, Andrew J</creatorcontrib><creatorcontrib>Langelaan, David N</creatorcontrib><creatorcontrib>Dellaire, Graham</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathavarajah, Sabateeshan</au><au>Vergunst, Kathleen L</au><au>Habib, Elias B</au><au>Williams, Shelby K</au><au>He, Raymond</au><au>Maliougina, Maria</au><au>Park, Mika</au><au>Salsman, Jayme</au><au>Roy, Stéphane</au><au>Braasch, Ingo</au><au>Roger, Andrew J</au><au>Langelaan, David N</au><au>Dellaire, Graham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>51</volume><issue>7</issue><spage>3185</spage><epage>3204</epage><pages>3185-3204</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36912092</pmid><doi>10.1093/nar/gkad152</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7005-5208</orcidid><orcidid>https://orcid.org/0000-0001-9592-3075</orcidid><orcidid>https://orcid.org/0000-0002-3466-6316</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2023-04, Vol.51 (7), p.3185-3204 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123124 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Genome Integrity, Repair and Gnathostoma - enzymology Gnathostoma - genetics Gnathostoma - metabolism Humans Mammals - genetics Promyelocytic Leukemia Protein - genetics Promyelocytic Leukemia Protein - metabolism Protein Isoforms - genetics Retroelements - genetics Transcription Factors - metabolism Zebrafish - genetics Zebrafish - metabolism |
title | PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PML%20and%20PML-like%20exonucleases%20restrict%20retrotransposons%20in%20jawed%20vertebrates&rft.jtitle=Nucleic%20acids%20research&rft.au=Mathavarajah,%20Sabateeshan&rft.date=2023-04-24&rft.volume=51&rft.issue=7&rft.spage=3185&rft.epage=3204&rft.pages=3185-3204&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad152&rft_dat=%3Cproquest_pubme%3E2786514792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786514792&rft_id=info:pmid/36912092&rft_oup_id=10.1093/nar/gkad152&rfr_iscdi=true |