Using single cell atlas data to reconstruct regulatory networks

Abstract Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)–gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2023-04, Vol.51 (7), p.e38-e38
Hauptverfasser: Song, Qi, Ruffalo, Matthew, Bar-Joseph, Ziv
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e38
container_issue 7
container_start_page e38
container_title Nucleic acids research
container_volume 51
creator Song, Qi
Ruffalo, Matthew
Bar-Joseph, Ziv
description Abstract Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)–gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherently temporal. Here, we developed a new computational method that combines neural networks and multi-task learning to predict RNA velocity rather than gene expression values. This allows our method to overcome many of the problems faced by prior methods leading to more accurate and more comprehensive set of identified regulatory interactions. Application of our method to atlas scale single cell data from 6 HuBMAP tissues led to several validated and novel predictions and greatly improved on prior methods proposed for this task.
doi_str_mv 10.1093/nar/gkad053
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkad053</oup_id><sourcerecordid>2775618111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a054e93c478e9cca364b33c375e61829d2047e18b51fc273a0e6075dce71851e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZP3mVPIsjaTD53T0WKX1DwYs8hzaZ17XZTk6zSf29Kq-jFy8ww8_DOzIvQOeAbwCUdttoPF0tdYU4PUB-oIDkrBTlEfUwxzwGzoodOQnjDGBhwdox6VEhBmOR9NJqGul1k29DYzNimyXRsdMgqHXUWXeatcW2IvjMx1Yuu0dH5Tdba-On8Mpyio7lugj3b5wGa3t-9jB_zyfPD0_h2khsGNOYac2ZLapgsbGmMpoLNKDVUciugIGVFMJMWihmHuSGSamwFlrwyVkLBwdIBGu10191sZVO_jV43au3rlfYb5XSt_k7a-lUt3IcCDIQCiKRwtVfw7r2zIapVHbYP69a6LigiJU-3AEBCr3eo8S4Eb-c_ewCrrecqea72nif64vdpP-y3yQm43AGuW_-r9AX4RYu5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775618111</pqid></control><display><type>article</type><title>Using single cell atlas data to reconstruct regulatory networks</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Song, Qi ; Ruffalo, Matthew ; Bar-Joseph, Ziv</creator><creatorcontrib>Song, Qi ; Ruffalo, Matthew ; Bar-Joseph, Ziv</creatorcontrib><description>Abstract Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)–gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherently temporal. Here, we developed a new computational method that combines neural networks and multi-task learning to predict RNA velocity rather than gene expression values. This allows our method to overcome many of the problems faced by prior methods leading to more accurate and more comprehensive set of identified regulatory interactions. Application of our method to atlas scale single cell data from 6 HuBMAP tissues led to several validated and novel predictions and greatly improved on prior methods proposed for this task.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad053</identifier><identifier>PMID: 36762475</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Atlases as Topic ; Computational Biology ; Gene Regulatory Networks ; Methods Online ; Single-Cell Analysis ; Systems Biology</subject><ispartof>Nucleic acids research, 2023-04, Vol.51 (7), p.e38-e38</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a054e93c478e9cca364b33c375e61829d2047e18b51fc273a0e6075dce71851e3</citedby><cites>FETCH-LOGICAL-c413t-a054e93c478e9cca364b33c375e61829d2047e18b51fc273a0e6075dce71851e3</cites><orcidid>0000-0003-2222-6169 ; 0000-0003-3430-6051 ; 0000-0001-5420-4031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123116/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123116/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36762475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Qi</creatorcontrib><creatorcontrib>Ruffalo, Matthew</creatorcontrib><creatorcontrib>Bar-Joseph, Ziv</creatorcontrib><title>Using single cell atlas data to reconstruct regulatory networks</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)–gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherently temporal. Here, we developed a new computational method that combines neural networks and multi-task learning to predict RNA velocity rather than gene expression values. This allows our method to overcome many of the problems faced by prior methods leading to more accurate and more comprehensive set of identified regulatory interactions. Application of our method to atlas scale single cell data from 6 HuBMAP tissues led to several validated and novel predictions and greatly improved on prior methods proposed for this task.</description><subject>Algorithms</subject><subject>Atlases as Topic</subject><subject>Computational Biology</subject><subject>Gene Regulatory Networks</subject><subject>Methods Online</subject><subject>Single-Cell Analysis</subject><subject>Systems Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlZP3mVPIsjaTD53T0WKX1DwYs8hzaZ17XZTk6zSf29Kq-jFy8ww8_DOzIvQOeAbwCUdttoPF0tdYU4PUB-oIDkrBTlEfUwxzwGzoodOQnjDGBhwdox6VEhBmOR9NJqGul1k29DYzNimyXRsdMgqHXUWXeatcW2IvjMx1Yuu0dH5Tdba-On8Mpyio7lugj3b5wGa3t-9jB_zyfPD0_h2khsGNOYac2ZLapgsbGmMpoLNKDVUciugIGVFMJMWihmHuSGSamwFlrwyVkLBwdIBGu10191sZVO_jV43au3rlfYb5XSt_k7a-lUt3IcCDIQCiKRwtVfw7r2zIapVHbYP69a6LigiJU-3AEBCr3eo8S4Eb-c_ewCrrecqea72nif64vdpP-y3yQm43AGuW_-r9AX4RYu5</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Song, Qi</creator><creator>Ruffalo, Matthew</creator><creator>Bar-Joseph, Ziv</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2222-6169</orcidid><orcidid>https://orcid.org/0000-0003-3430-6051</orcidid><orcidid>https://orcid.org/0000-0001-5420-4031</orcidid></search><sort><creationdate>20230424</creationdate><title>Using single cell atlas data to reconstruct regulatory networks</title><author>Song, Qi ; Ruffalo, Matthew ; Bar-Joseph, Ziv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a054e93c478e9cca364b33c375e61829d2047e18b51fc273a0e6075dce71851e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Atlases as Topic</topic><topic>Computational Biology</topic><topic>Gene Regulatory Networks</topic><topic>Methods Online</topic><topic>Single-Cell Analysis</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Qi</creatorcontrib><creatorcontrib>Ruffalo, Matthew</creatorcontrib><creatorcontrib>Bar-Joseph, Ziv</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Qi</au><au>Ruffalo, Matthew</au><au>Bar-Joseph, Ziv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using single cell atlas data to reconstruct regulatory networks</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>51</volume><issue>7</issue><spage>e38</spage><epage>e38</epage><pages>e38-e38</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)–gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherently temporal. Here, we developed a new computational method that combines neural networks and multi-task learning to predict RNA velocity rather than gene expression values. This allows our method to overcome many of the problems faced by prior methods leading to more accurate and more comprehensive set of identified regulatory interactions. Application of our method to atlas scale single cell data from 6 HuBMAP tissues led to several validated and novel predictions and greatly improved on prior methods proposed for this task.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36762475</pmid><doi>10.1093/nar/gkad053</doi><orcidid>https://orcid.org/0000-0003-2222-6169</orcidid><orcidid>https://orcid.org/0000-0003-3430-6051</orcidid><orcidid>https://orcid.org/0000-0001-5420-4031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2023-04, Vol.51 (7), p.e38-e38
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123116
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Atlases as Topic
Computational Biology
Gene Regulatory Networks
Methods Online
Single-Cell Analysis
Systems Biology
title Using single cell atlas data to reconstruct regulatory networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20single%20cell%20atlas%20data%20to%20reconstruct%20regulatory%20networks&rft.jtitle=Nucleic%20acids%20research&rft.au=Song,%20Qi&rft.date=2023-04-24&rft.volume=51&rft.issue=7&rft.spage=e38&rft.epage=e38&rft.pages=e38-e38&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad053&rft_dat=%3Cproquest_pubme%3E2775618111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775618111&rft_id=info:pmid/36762475&rft_oup_id=10.1093/nar/gkad053&rfr_iscdi=true