The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment

Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurotherapeutics 2023-03, Vol.20 (2), p.419-430
Hauptverfasser: Murphy, Aidan J., O’Neal, Alexandria G., Cohen, Ronald A., Lamb, Damon G., Porges, Eric C., Bottari, Sarah A., Ho, Brian, Trifilio, Erin, DeKosky, Steven T., Heilman, Kenneth M., Williamson, John B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 2
container_start_page 419
container_title Neurotherapeutics
container_volume 20
creator Murphy, Aidan J.
O’Neal, Alexandria G.
Cohen, Ronald A.
Lamb, Damon G.
Porges, Eric C.
Bottari, Sarah A.
Ho, Brian
Trifilio, Erin
DeKosky, Steven T.
Heilman, Kenneth M.
Williamson, John B.
description Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain’s primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test — Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus, n  = 25) or sham control conditions (left ear lobe, n  = 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.
doi_str_mv 10.1007/s13311-022-01318-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10121945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753316933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-2b030e14c97d9abf34640384cadbd6a29b9077b6d0d18db2e16127c269bd90f63</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsAv6bOF4hNGpppVIWHWBpObYz45LYqe0M6ovwvNySUn4WSJZ9JX_nXPueqnpO8GuCsXiTCWOE1JjSGhNG2po_qA5JK9pacCEfQi0ZqwUl7KB6kvMVxivGZPu4OmANF0JgeVh93-wcOu57Z0pGsUebpEM2c9HBxTmjz3oL-4VLe4cuix_nQRcfA4J1MgdzW-sBrWMIYOD3vtygL77sfECXbtSheIN0sOjUT1M0epwAvnDlW0xfMwLogx8sqLfBg9ihMwB8Gl0oT6tHvR6ye3Z3HlWfTo4369P6_OP7s_W789pwsSo17TDDjnAjhZW66xlvOGYtN9p2ttFUdhIL0TUWW9LajjrSECoMbWRnJe4bdlS9XXynuRudNdA66UFNyY863aiovfr7Jvid2sa9IphQIvkKHF7dOaR4Pbtc1OizccOwTFBRAUMnDSQB6Mt_0Ks4JxggUC3mhDdYYKDoQpkUc06uv38Nweo2d7XkriB39TN3xUH04s9_3Et-BQ0AW4AMV2Hr0u_e_7H9Af05u_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804146070</pqid></control><display><type>article</type><title>The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Murphy, Aidan J. ; O’Neal, Alexandria G. ; Cohen, Ronald A. ; Lamb, Damon G. ; Porges, Eric C. ; Bottari, Sarah A. ; Ho, Brian ; Trifilio, Erin ; DeKosky, Steven T. ; Heilman, Kenneth M. ; Williamson, John B.</creator><creatorcontrib>Murphy, Aidan J. ; O’Neal, Alexandria G. ; Cohen, Ronald A. ; Lamb, Damon G. ; Porges, Eric C. ; Bottari, Sarah A. ; Ho, Brian ; Trifilio, Erin ; DeKosky, Steven T. ; Heilman, Kenneth M. ; Williamson, John B.</creatorcontrib><description>Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain’s primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test — Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus, n  = 25) or sham control conditions (left ear lobe, n  = 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-022-01318-4</identifier><identifier>PMID: 36477709</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alzheimer's disease ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain mapping ; Cognitive ability ; Cognitive Dysfunction - therapy ; Dementia disorders ; Ear ; Female ; Functional magnetic resonance imaging ; Hippocampus ; Humans ; Locus coeruleus ; Magnetic Resonance Imaging ; Neural networks ; Neurobiology ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; Neurosciences ; Neurosurgery ; Norepinephrine ; Original ; Original Article ; Patients ; Semantics ; Sensory neurons ; Tau protein ; Vagus nerve ; Vagus Nerve - physiology ; Vagus Nerve Stimulation - methods</subject><ispartof>Neurotherapeutics, 2023-03, Vol.20 (2), p.419-430</ispartof><rights>The American Society for Experimental Neurotherapeutics, Inc. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The American Society for Experimental Neurotherapeutics, Inc.</rights><rights>The American Society for Experimental Neurotherapeutics, Inc. 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-2b030e14c97d9abf34640384cadbd6a29b9077b6d0d18db2e16127c269bd90f63</citedby><cites>FETCH-LOGICAL-c475t-2b030e14c97d9abf34640384cadbd6a29b9077b6d0d18db2e16127c269bd90f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121945/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121945/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,41497,42566,51328,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36477709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy, Aidan J.</creatorcontrib><creatorcontrib>O’Neal, Alexandria G.</creatorcontrib><creatorcontrib>Cohen, Ronald A.</creatorcontrib><creatorcontrib>Lamb, Damon G.</creatorcontrib><creatorcontrib>Porges, Eric C.</creatorcontrib><creatorcontrib>Bottari, Sarah A.</creatorcontrib><creatorcontrib>Ho, Brian</creatorcontrib><creatorcontrib>Trifilio, Erin</creatorcontrib><creatorcontrib>DeKosky, Steven T.</creatorcontrib><creatorcontrib>Heilman, Kenneth M.</creatorcontrib><creatorcontrib>Williamson, John B.</creatorcontrib><title>The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>Neurotherapeutics</addtitle><description>Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain’s primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test — Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus, n  = 25) or sham control conditions (left ear lobe, n  = 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.</description><subject>Alzheimer's disease</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain mapping</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - therapy</subject><subject>Dementia disorders</subject><subject>Ear</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Locus coeruleus</subject><subject>Magnetic Resonance Imaging</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Norepinephrine</subject><subject>Original</subject><subject>Original Article</subject><subject>Patients</subject><subject>Semantics</subject><subject>Sensory neurons</subject><subject>Tau protein</subject><subject>Vagus nerve</subject><subject>Vagus Nerve - physiology</subject><subject>Vagus Nerve Stimulation - methods</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsAv6bOF4hNGpppVIWHWBpObYz45LYqe0M6ovwvNySUn4WSJZ9JX_nXPueqnpO8GuCsXiTCWOE1JjSGhNG2po_qA5JK9pacCEfQi0ZqwUl7KB6kvMVxivGZPu4OmANF0JgeVh93-wcOu57Z0pGsUebpEM2c9HBxTmjz3oL-4VLe4cuix_nQRcfA4J1MgdzW-sBrWMIYOD3vtygL77sfECXbtSheIN0sOjUT1M0epwAvnDlW0xfMwLogx8sqLfBg9ihMwB8Gl0oT6tHvR6ye3Z3HlWfTo4369P6_OP7s_W789pwsSo17TDDjnAjhZW66xlvOGYtN9p2ttFUdhIL0TUWW9LajjrSECoMbWRnJe4bdlS9XXynuRudNdA66UFNyY863aiovfr7Jvid2sa9IphQIvkKHF7dOaR4Pbtc1OizccOwTFBRAUMnDSQB6Mt_0Ks4JxggUC3mhDdYYKDoQpkUc06uv38Nweo2d7XkriB39TN3xUH04s9_3Et-BQ0AW4AMV2Hr0u_e_7H9Af05u_4</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Murphy, Aidan J.</creator><creator>O’Neal, Alexandria G.</creator><creator>Cohen, Ronald A.</creator><creator>Lamb, Damon G.</creator><creator>Porges, Eric C.</creator><creator>Bottari, Sarah A.</creator><creator>Ho, Brian</creator><creator>Trifilio, Erin</creator><creator>DeKosky, Steven T.</creator><creator>Heilman, Kenneth M.</creator><creator>Williamson, John B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230301</creationdate><title>The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment</title><author>Murphy, Aidan J. ; O’Neal, Alexandria G. ; Cohen, Ronald A. ; Lamb, Damon G. ; Porges, Eric C. ; Bottari, Sarah A. ; Ho, Brian ; Trifilio, Erin ; DeKosky, Steven T. ; Heilman, Kenneth M. ; Williamson, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-2b030e14c97d9abf34640384cadbd6a29b9077b6d0d18db2e16127c269bd90f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain mapping</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - therapy</topic><topic>Dementia disorders</topic><topic>Ear</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Locus coeruleus</topic><topic>Magnetic Resonance Imaging</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Norepinephrine</topic><topic>Original</topic><topic>Original Article</topic><topic>Patients</topic><topic>Semantics</topic><topic>Sensory neurons</topic><topic>Tau protein</topic><topic>Vagus nerve</topic><topic>Vagus Nerve - physiology</topic><topic>Vagus Nerve Stimulation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Aidan J.</creatorcontrib><creatorcontrib>O’Neal, Alexandria G.</creatorcontrib><creatorcontrib>Cohen, Ronald A.</creatorcontrib><creatorcontrib>Lamb, Damon G.</creatorcontrib><creatorcontrib>Porges, Eric C.</creatorcontrib><creatorcontrib>Bottari, Sarah A.</creatorcontrib><creatorcontrib>Ho, Brian</creatorcontrib><creatorcontrib>Trifilio, Erin</creatorcontrib><creatorcontrib>DeKosky, Steven T.</creatorcontrib><creatorcontrib>Heilman, Kenneth M.</creatorcontrib><creatorcontrib>Williamson, John B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Aidan J.</au><au>O’Neal, Alexandria G.</au><au>Cohen, Ronald A.</au><au>Lamb, Damon G.</au><au>Porges, Eric C.</au><au>Bottari, Sarah A.</au><au>Ho, Brian</au><au>Trifilio, Erin</au><au>DeKosky, Steven T.</au><au>Heilman, Kenneth M.</au><au>Williamson, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><addtitle>Neurotherapeutics</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>419</spage><epage>430</epage><pages>419-430</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><abstract>Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain’s primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test — Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus, n  = 25) or sham control conditions (left ear lobe, n  = 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>36477709</pmid><doi>10.1007/s13311-022-01318-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-7213
ispartof Neurotherapeutics, 2023-03, Vol.20 (2), p.419-430
issn 1933-7213
1878-7479
1878-7479
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10121945
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central; Alma/SFX Local Collection
subjects Alzheimer's disease
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Brain mapping
Cognitive ability
Cognitive Dysfunction - therapy
Dementia disorders
Ear
Female
Functional magnetic resonance imaging
Hippocampus
Humans
Locus coeruleus
Magnetic Resonance Imaging
Neural networks
Neurobiology
Neurodegenerative diseases
Neuroimaging
Neurology
Neurosciences
Neurosurgery
Norepinephrine
Original
Original Article
Patients
Semantics
Sensory neurons
Tau protein
Vagus nerve
Vagus Nerve - physiology
Vagus Nerve Stimulation - methods
title The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T14%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effects%20of%20Transcutaneous%20Vagus%20Nerve%20Stimulation%20on%20Functional%20Connectivity%20Within%20Semantic%20and%20Hippocampal%20Networks%20in%20Mild%20Cognitive%20Impairment&rft.jtitle=Neurotherapeutics&rft.au=Murphy,%20Aidan%20J.&rft.date=2023-03-01&rft.volume=20&rft.issue=2&rft.spage=419&rft.epage=430&rft.pages=419-430&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-022-01318-4&rft_dat=%3Cproquest_pubme%3E2753316933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804146070&rft_id=info:pmid/36477709&rfr_iscdi=true