The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment
Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection...
Gespeichert in:
Veröffentlicht in: | Neurotherapeutics 2023-03, Vol.20 (2), p.419-430 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 430 |
---|---|
container_issue | 2 |
container_start_page | 419 |
container_title | Neurotherapeutics |
container_volume | 20 |
creator | Murphy, Aidan J. O’Neal, Alexandria G. Cohen, Ronald A. Lamb, Damon G. Porges, Eric C. Bottari, Sarah A. Ho, Brian Trifilio, Erin DeKosky, Steven T. Heilman, Kenneth M. Williamson, John B. |
description | Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain’s primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test — Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus,
n
= 25) or sham control conditions (left ear lobe,
n
= 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population. |
doi_str_mv | 10.1007/s13311-022-01318-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10121945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753316933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-2b030e14c97d9abf34640384cadbd6a29b9077b6d0d18db2e16127c269bd90f63</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsAv6bOF4hNGpppVIWHWBpObYz45LYqe0M6ovwvNySUn4WSJZ9JX_nXPueqnpO8GuCsXiTCWOE1JjSGhNG2po_qA5JK9pacCEfQi0ZqwUl7KB6kvMVxivGZPu4OmANF0JgeVh93-wcOu57Z0pGsUebpEM2c9HBxTmjz3oL-4VLe4cuix_nQRcfA4J1MgdzW-sBrWMIYOD3vtygL77sfECXbtSheIN0sOjUT1M0epwAvnDlW0xfMwLogx8sqLfBg9ihMwB8Gl0oT6tHvR6ye3Z3HlWfTo4369P6_OP7s_W789pwsSo17TDDjnAjhZW66xlvOGYtN9p2ttFUdhIL0TUWW9LajjrSECoMbWRnJe4bdlS9XXynuRudNdA66UFNyY863aiovfr7Jvid2sa9IphQIvkKHF7dOaR4Pbtc1OizccOwTFBRAUMnDSQB6Mt_0Ks4JxggUC3mhDdYYKDoQpkUc06uv38Nweo2d7XkriB39TN3xUH04s9_3Et-BQ0AW4AMV2Hr0u_e_7H9Af05u_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804146070</pqid></control><display><type>article</type><title>The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Murphy, Aidan J. ; O’Neal, Alexandria G. ; Cohen, Ronald A. ; Lamb, Damon G. ; Porges, Eric C. ; Bottari, Sarah A. ; Ho, Brian ; Trifilio, Erin ; DeKosky, Steven T. ; Heilman, Kenneth M. ; Williamson, John B.</creator><creatorcontrib>Murphy, Aidan J. ; O’Neal, Alexandria G. ; Cohen, Ronald A. ; Lamb, Damon G. ; Porges, Eric C. ; Bottari, Sarah A. ; Ho, Brian ; Trifilio, Erin ; DeKosky, Steven T. ; Heilman, Kenneth M. ; Williamson, John B.</creatorcontrib><description>Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain’s primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test — Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus,
n
= 25) or sham control conditions (left ear lobe,
n
= 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-022-01318-4</identifier><identifier>PMID: 36477709</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alzheimer's disease ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain mapping ; Cognitive ability ; Cognitive Dysfunction - therapy ; Dementia disorders ; Ear ; Female ; Functional magnetic resonance imaging ; Hippocampus ; Humans ; Locus coeruleus ; Magnetic Resonance Imaging ; Neural networks ; Neurobiology ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; Neurosciences ; Neurosurgery ; Norepinephrine ; Original ; Original Article ; Patients ; Semantics ; Sensory neurons ; Tau protein ; Vagus nerve ; Vagus Nerve - physiology ; Vagus Nerve Stimulation - methods</subject><ispartof>Neurotherapeutics, 2023-03, Vol.20 (2), p.419-430</ispartof><rights>The American Society for Experimental Neurotherapeutics, Inc. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The American Society for Experimental Neurotherapeutics, Inc.</rights><rights>The American Society for Experimental Neurotherapeutics, Inc. 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-2b030e14c97d9abf34640384cadbd6a29b9077b6d0d18db2e16127c269bd90f63</citedby><cites>FETCH-LOGICAL-c475t-2b030e14c97d9abf34640384cadbd6a29b9077b6d0d18db2e16127c269bd90f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121945/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121945/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,41497,42566,51328,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36477709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy, Aidan J.</creatorcontrib><creatorcontrib>O’Neal, Alexandria G.</creatorcontrib><creatorcontrib>Cohen, Ronald A.</creatorcontrib><creatorcontrib>Lamb, Damon G.</creatorcontrib><creatorcontrib>Porges, Eric C.</creatorcontrib><creatorcontrib>Bottari, Sarah A.</creatorcontrib><creatorcontrib>Ho, Brian</creatorcontrib><creatorcontrib>Trifilio, Erin</creatorcontrib><creatorcontrib>DeKosky, Steven T.</creatorcontrib><creatorcontrib>Heilman, Kenneth M.</creatorcontrib><creatorcontrib>Williamson, John B.</creatorcontrib><title>The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>Neurotherapeutics</addtitle><description>Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain’s primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test — Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus,
n
= 25) or sham control conditions (left ear lobe,
n
= 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.</description><subject>Alzheimer's disease</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain mapping</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - therapy</subject><subject>Dementia disorders</subject><subject>Ear</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Locus coeruleus</subject><subject>Magnetic Resonance Imaging</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Norepinephrine</subject><subject>Original</subject><subject>Original Article</subject><subject>Patients</subject><subject>Semantics</subject><subject>Sensory neurons</subject><subject>Tau protein</subject><subject>Vagus nerve</subject><subject>Vagus Nerve - physiology</subject><subject>Vagus Nerve Stimulation - methods</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsAv6bOF4hNGpppVIWHWBpObYz45LYqe0M6ovwvNySUn4WSJZ9JX_nXPueqnpO8GuCsXiTCWOE1JjSGhNG2po_qA5JK9pacCEfQi0ZqwUl7KB6kvMVxivGZPu4OmANF0JgeVh93-wcOu57Z0pGsUebpEM2c9HBxTmjz3oL-4VLe4cuix_nQRcfA4J1MgdzW-sBrWMIYOD3vtygL77sfECXbtSheIN0sOjUT1M0epwAvnDlW0xfMwLogx8sqLfBg9ihMwB8Gl0oT6tHvR6ye3Z3HlWfTo4369P6_OP7s_W789pwsSo17TDDjnAjhZW66xlvOGYtN9p2ttFUdhIL0TUWW9LajjrSECoMbWRnJe4bdlS9XXynuRudNdA66UFNyY863aiovfr7Jvid2sa9IphQIvkKHF7dOaR4Pbtc1OizccOwTFBRAUMnDSQB6Mt_0Ks4JxggUC3mhDdYYKDoQpkUc06uv38Nweo2d7XkriB39TN3xUH04s9_3Et-BQ0AW4AMV2Hr0u_e_7H9Af05u_4</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Murphy, Aidan J.</creator><creator>O’Neal, Alexandria G.</creator><creator>Cohen, Ronald A.</creator><creator>Lamb, Damon G.</creator><creator>Porges, Eric C.</creator><creator>Bottari, Sarah A.</creator><creator>Ho, Brian</creator><creator>Trifilio, Erin</creator><creator>DeKosky, Steven T.</creator><creator>Heilman, Kenneth M.</creator><creator>Williamson, John B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230301</creationdate><title>The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment</title><author>Murphy, Aidan J. ; O’Neal, Alexandria G. ; Cohen, Ronald A. ; Lamb, Damon G. ; Porges, Eric C. ; Bottari, Sarah A. ; Ho, Brian ; Trifilio, Erin ; DeKosky, Steven T. ; Heilman, Kenneth M. ; Williamson, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-2b030e14c97d9abf34640384cadbd6a29b9077b6d0d18db2e16127c269bd90f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain mapping</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - therapy</topic><topic>Dementia disorders</topic><topic>Ear</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Locus coeruleus</topic><topic>Magnetic Resonance Imaging</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Norepinephrine</topic><topic>Original</topic><topic>Original Article</topic><topic>Patients</topic><topic>Semantics</topic><topic>Sensory neurons</topic><topic>Tau protein</topic><topic>Vagus nerve</topic><topic>Vagus Nerve - physiology</topic><topic>Vagus Nerve Stimulation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Aidan J.</creatorcontrib><creatorcontrib>O’Neal, Alexandria G.</creatorcontrib><creatorcontrib>Cohen, Ronald A.</creatorcontrib><creatorcontrib>Lamb, Damon G.</creatorcontrib><creatorcontrib>Porges, Eric C.</creatorcontrib><creatorcontrib>Bottari, Sarah A.</creatorcontrib><creatorcontrib>Ho, Brian</creatorcontrib><creatorcontrib>Trifilio, Erin</creatorcontrib><creatorcontrib>DeKosky, Steven T.</creatorcontrib><creatorcontrib>Heilman, Kenneth M.</creatorcontrib><creatorcontrib>Williamson, John B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Aidan J.</au><au>O’Neal, Alexandria G.</au><au>Cohen, Ronald A.</au><au>Lamb, Damon G.</au><au>Porges, Eric C.</au><au>Bottari, Sarah A.</au><au>Ho, Brian</au><au>Trifilio, Erin</au><au>DeKosky, Steven T.</au><au>Heilman, Kenneth M.</au><au>Williamson, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><addtitle>Neurotherapeutics</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>419</spage><epage>430</epage><pages>419-430</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><abstract>Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain’s primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test — Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus,
n
= 25) or sham control conditions (left ear lobe,
n
= 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>36477709</pmid><doi>10.1007/s13311-022-01318-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1933-7213 |
ispartof | Neurotherapeutics, 2023-03, Vol.20 (2), p.419-430 |
issn | 1933-7213 1878-7479 1878-7479 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10121945 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Alzheimer's disease Biomedical and Life Sciences Biomedicine Brain - diagnostic imaging Brain mapping Cognitive ability Cognitive Dysfunction - therapy Dementia disorders Ear Female Functional magnetic resonance imaging Hippocampus Humans Locus coeruleus Magnetic Resonance Imaging Neural networks Neurobiology Neurodegenerative diseases Neuroimaging Neurology Neurosciences Neurosurgery Norepinephrine Original Original Article Patients Semantics Sensory neurons Tau protein Vagus nerve Vagus Nerve - physiology Vagus Nerve Stimulation - methods |
title | The Effects of Transcutaneous Vagus Nerve Stimulation on Functional Connectivity Within Semantic and Hippocampal Networks in Mild Cognitive Impairment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T14%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effects%20of%20Transcutaneous%20Vagus%20Nerve%20Stimulation%20on%20Functional%20Connectivity%20Within%20Semantic%20and%20Hippocampal%20Networks%20in%20Mild%20Cognitive%20Impairment&rft.jtitle=Neurotherapeutics&rft.au=Murphy,%20Aidan%20J.&rft.date=2023-03-01&rft.volume=20&rft.issue=2&rft.spage=419&rft.epage=430&rft.pages=419-430&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-022-01318-4&rft_dat=%3Cproquest_pubme%3E2753316933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804146070&rft_id=info:pmid/36477709&rfr_iscdi=true |