Gas-modulating microcapsules for spatiotemporal control of hypoxia

Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high load...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-04, Vol.120 (16), p.e2217557120-e2217557120
Hauptverfasser: Molley, Thomas G, Jiang, Shouyuan, Ong, Louis, Kopecky, Chantal, Ranaweera, Chavinya D, Jalandhra, Gagan K, Milton, Laura, Kardia, Egi, Zhou, Zeheng, Rnjak-Kovacina, Jelena, Waters, Shafagh A, Toh, Yi-Chin, Kilian, Kristopher A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2217557120
container_issue 16
container_start_page e2217557120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Molley, Thomas G
Jiang, Shouyuan
Ong, Louis
Kopecky, Chantal
Ranaweera, Chavinya D
Jalandhra, Gagan K
Milton, Laura
Kardia, Egi
Zhou, Zeheng
Rnjak-Kovacina, Jelena
Waters, Shafagh A
Toh, Yi-Chin
Kilian, Kristopher A
description Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.
doi_str_mv 10.1073/pnas.2217557120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10120079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799827988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-92b68c2c679a1d0db662d48e7de78b188738e2e8a4fd7623da1a1a5018771c8a3</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEYmNw5oYqceHSzUnTJj0hmGAgTeIC5yhL061T2pSkRezfk2ljfMiSffDjV7ZfhC4xjDGwZNI20o8JwSxNGSZwhIYYchxnNIdjNAQgLOaU0AE6834NAHnK4RQNEgYUKE6H6H4mfVzbojeyq5plVFfKWSVb3xvto9K6yLehYztdt9ZJEynbdM6ayJbRatPaz0qeo5NSGq8v9nWE3h4fXqdP8fxl9jy9m8eKEtLFOVlkXBGVsVziAopFlpGCcs0KzfgCc84SronmkpYFy0hSSBwiBcwZw4rLZIRud7ptv6h1oXRYRBrRuqqWbiOsrMTfTlOtxNJ-CAzhNcDyoHCzV3D2vde-E3XllTZGNtr2XhCW5zwkzgN6_Q9d29414T5BOCQpIQxDoCY7KjzNe6fLwzYYxNYgsTVI_BgUJq5-H3Hgvx1JvgDq7I0d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803522710</pqid></control><display><type>article</type><title>Gas-modulating microcapsules for spatiotemporal control of hypoxia</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Molley, Thomas G ; Jiang, Shouyuan ; Ong, Louis ; Kopecky, Chantal ; Ranaweera, Chavinya D ; Jalandhra, Gagan K ; Milton, Laura ; Kardia, Egi ; Zhou, Zeheng ; Rnjak-Kovacina, Jelena ; Waters, Shafagh A ; Toh, Yi-Chin ; Kilian, Kristopher A</creator><creatorcontrib>Molley, Thomas G ; Jiang, Shouyuan ; Ong, Louis ; Kopecky, Chantal ; Ranaweera, Chavinya D ; Jalandhra, Gagan K ; Milton, Laura ; Kardia, Egi ; Zhou, Zeheng ; Rnjak-Kovacina, Jelena ; Waters, Shafagh A ; Toh, Yi-Chin ; Kilian, Kristopher A</creatorcontrib><description>Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2217557120</identifier><identifier>PMID: 37040415</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biocompatible Materials ; Biological Sciences ; Biomaterials ; Biomedical materials ; Cancer ; Capsules ; Cell culture ; Endothelial cells ; Endothelial Cells - metabolism ; Homeostasis ; Humans ; Hydrogels ; Hypoxia ; In vivo methods and tests ; Medical dressings ; Microcapsules ; Microencapsulation ; Morphogenesis ; Organoids ; Oxygen ; Oxygen - metabolism ; Oxygen balance ; Oxygen content ; Physical Sciences ; Replenishment ; Spheroids ; Stem cells ; Vascularization</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (16), p.e2217557120-e2217557120</ispartof><rights>Copyright National Academy of Sciences Apr 18, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-92b68c2c679a1d0db662d48e7de78b188738e2e8a4fd7623da1a1a5018771c8a3</citedby><cites>FETCH-LOGICAL-c422t-92b68c2c679a1d0db662d48e7de78b188738e2e8a4fd7623da1a1a5018771c8a3</cites><orcidid>0000-0003-1144-5411 ; 0000-0002-8963-9796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37040415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molley, Thomas G</creatorcontrib><creatorcontrib>Jiang, Shouyuan</creatorcontrib><creatorcontrib>Ong, Louis</creatorcontrib><creatorcontrib>Kopecky, Chantal</creatorcontrib><creatorcontrib>Ranaweera, Chavinya D</creatorcontrib><creatorcontrib>Jalandhra, Gagan K</creatorcontrib><creatorcontrib>Milton, Laura</creatorcontrib><creatorcontrib>Kardia, Egi</creatorcontrib><creatorcontrib>Zhou, Zeheng</creatorcontrib><creatorcontrib>Rnjak-Kovacina, Jelena</creatorcontrib><creatorcontrib>Waters, Shafagh A</creatorcontrib><creatorcontrib>Toh, Yi-Chin</creatorcontrib><creatorcontrib>Kilian, Kristopher A</creatorcontrib><title>Gas-modulating microcapsules for spatiotemporal control of hypoxia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.</description><subject>Biocompatible Materials</subject><subject>Biological Sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cancer</subject><subject>Capsules</subject><subject>Cell culture</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hypoxia</subject><subject>In vivo methods and tests</subject><subject>Medical dressings</subject><subject>Microcapsules</subject><subject>Microencapsulation</subject><subject>Morphogenesis</subject><subject>Organoids</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen balance</subject><subject>Oxygen content</subject><subject>Physical Sciences</subject><subject>Replenishment</subject><subject>Spheroids</subject><subject>Stem cells</subject><subject>Vascularization</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1PwzAMhiMEYmNw5oYqceHSzUnTJj0hmGAgTeIC5yhL061T2pSkRezfk2ljfMiSffDjV7ZfhC4xjDGwZNI20o8JwSxNGSZwhIYYchxnNIdjNAQgLOaU0AE6834NAHnK4RQNEgYUKE6H6H4mfVzbojeyq5plVFfKWSVb3xvto9K6yLehYztdt9ZJEynbdM6ayJbRatPaz0qeo5NSGq8v9nWE3h4fXqdP8fxl9jy9m8eKEtLFOVlkXBGVsVziAopFlpGCcs0KzfgCc84SronmkpYFy0hSSBwiBcwZw4rLZIRud7ptv6h1oXRYRBrRuqqWbiOsrMTfTlOtxNJ-CAzhNcDyoHCzV3D2vde-E3XllTZGNtr2XhCW5zwkzgN6_Q9d29414T5BOCQpIQxDoCY7KjzNe6fLwzYYxNYgsTVI_BgUJq5-H3Hgvx1JvgDq7I0d</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Molley, Thomas G</creator><creator>Jiang, Shouyuan</creator><creator>Ong, Louis</creator><creator>Kopecky, Chantal</creator><creator>Ranaweera, Chavinya D</creator><creator>Jalandhra, Gagan K</creator><creator>Milton, Laura</creator><creator>Kardia, Egi</creator><creator>Zhou, Zeheng</creator><creator>Rnjak-Kovacina, Jelena</creator><creator>Waters, Shafagh A</creator><creator>Toh, Yi-Chin</creator><creator>Kilian, Kristopher A</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1144-5411</orcidid><orcidid>https://orcid.org/0000-0002-8963-9796</orcidid></search><sort><creationdate>20230418</creationdate><title>Gas-modulating microcapsules for spatiotemporal control of hypoxia</title><author>Molley, Thomas G ; Jiang, Shouyuan ; Ong, Louis ; Kopecky, Chantal ; Ranaweera, Chavinya D ; Jalandhra, Gagan K ; Milton, Laura ; Kardia, Egi ; Zhou, Zeheng ; Rnjak-Kovacina, Jelena ; Waters, Shafagh A ; Toh, Yi-Chin ; Kilian, Kristopher A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-92b68c2c679a1d0db662d48e7de78b188738e2e8a4fd7623da1a1a5018771c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatible Materials</topic><topic>Biological Sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cancer</topic><topic>Capsules</topic><topic>Cell culture</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hypoxia</topic><topic>In vivo methods and tests</topic><topic>Medical dressings</topic><topic>Microcapsules</topic><topic>Microencapsulation</topic><topic>Morphogenesis</topic><topic>Organoids</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen balance</topic><topic>Oxygen content</topic><topic>Physical Sciences</topic><topic>Replenishment</topic><topic>Spheroids</topic><topic>Stem cells</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molley, Thomas G</creatorcontrib><creatorcontrib>Jiang, Shouyuan</creatorcontrib><creatorcontrib>Ong, Louis</creatorcontrib><creatorcontrib>Kopecky, Chantal</creatorcontrib><creatorcontrib>Ranaweera, Chavinya D</creatorcontrib><creatorcontrib>Jalandhra, Gagan K</creatorcontrib><creatorcontrib>Milton, Laura</creatorcontrib><creatorcontrib>Kardia, Egi</creatorcontrib><creatorcontrib>Zhou, Zeheng</creatorcontrib><creatorcontrib>Rnjak-Kovacina, Jelena</creatorcontrib><creatorcontrib>Waters, Shafagh A</creatorcontrib><creatorcontrib>Toh, Yi-Chin</creatorcontrib><creatorcontrib>Kilian, Kristopher A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molley, Thomas G</au><au>Jiang, Shouyuan</au><au>Ong, Louis</au><au>Kopecky, Chantal</au><au>Ranaweera, Chavinya D</au><au>Jalandhra, Gagan K</au><au>Milton, Laura</au><au>Kardia, Egi</au><au>Zhou, Zeheng</au><au>Rnjak-Kovacina, Jelena</au><au>Waters, Shafagh A</au><au>Toh, Yi-Chin</au><au>Kilian, Kristopher A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-modulating microcapsules for spatiotemporal control of hypoxia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-04-18</date><risdate>2023</risdate><volume>120</volume><issue>16</issue><spage>e2217557120</spage><epage>e2217557120</epage><pages>e2217557120-e2217557120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37040415</pmid><doi>10.1073/pnas.2217557120</doi><orcidid>https://orcid.org/0000-0003-1144-5411</orcidid><orcidid>https://orcid.org/0000-0002-8963-9796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (16), p.e2217557120-e2217557120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10120079
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biocompatible Materials
Biological Sciences
Biomaterials
Biomedical materials
Cancer
Capsules
Cell culture
Endothelial cells
Endothelial Cells - metabolism
Homeostasis
Humans
Hydrogels
Hypoxia
In vivo methods and tests
Medical dressings
Microcapsules
Microencapsulation
Morphogenesis
Organoids
Oxygen
Oxygen - metabolism
Oxygen balance
Oxygen content
Physical Sciences
Replenishment
Spheroids
Stem cells
Vascularization
title Gas-modulating microcapsules for spatiotemporal control of hypoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-modulating%20microcapsules%20for%20spatiotemporal%20control%20of%20hypoxia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Molley,%20Thomas%20G&rft.date=2023-04-18&rft.volume=120&rft.issue=16&rft.spage=e2217557120&rft.epage=e2217557120&rft.pages=e2217557120-e2217557120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2217557120&rft_dat=%3Cproquest_pubme%3E2799827988%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803522710&rft_id=info:pmid/37040415&rfr_iscdi=true