Gas-modulating microcapsules for spatiotemporal control of hypoxia
Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high load...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-04, Vol.120 (16), p.e2217557120-e2217557120 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2217557120 |
---|---|
container_issue | 16 |
container_start_page | e2217557120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Molley, Thomas G Jiang, Shouyuan Ong, Louis Kopecky, Chantal Ranaweera, Chavinya D Jalandhra, Gagan K Milton, Laura Kardia, Egi Zhou, Zeheng Rnjak-Kovacina, Jelena Waters, Shafagh A Toh, Yi-Chin Kilian, Kristopher A |
description | Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease. |
doi_str_mv | 10.1073/pnas.2217557120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10120079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799827988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-92b68c2c679a1d0db662d48e7de78b188738e2e8a4fd7623da1a1a5018771c8a3</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEYmNw5oYqceHSzUnTJj0hmGAgTeIC5yhL061T2pSkRezfk2ljfMiSffDjV7ZfhC4xjDGwZNI20o8JwSxNGSZwhIYYchxnNIdjNAQgLOaU0AE6834NAHnK4RQNEgYUKE6H6H4mfVzbojeyq5plVFfKWSVb3xvto9K6yLehYztdt9ZJEynbdM6ayJbRatPaz0qeo5NSGq8v9nWE3h4fXqdP8fxl9jy9m8eKEtLFOVlkXBGVsVziAopFlpGCcs0KzfgCc84SronmkpYFy0hSSBwiBcwZw4rLZIRud7ptv6h1oXRYRBrRuqqWbiOsrMTfTlOtxNJ-CAzhNcDyoHCzV3D2vde-E3XllTZGNtr2XhCW5zwkzgN6_Q9d29414T5BOCQpIQxDoCY7KjzNe6fLwzYYxNYgsTVI_BgUJq5-H3Hgvx1JvgDq7I0d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803522710</pqid></control><display><type>article</type><title>Gas-modulating microcapsules for spatiotemporal control of hypoxia</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Molley, Thomas G ; Jiang, Shouyuan ; Ong, Louis ; Kopecky, Chantal ; Ranaweera, Chavinya D ; Jalandhra, Gagan K ; Milton, Laura ; Kardia, Egi ; Zhou, Zeheng ; Rnjak-Kovacina, Jelena ; Waters, Shafagh A ; Toh, Yi-Chin ; Kilian, Kristopher A</creator><creatorcontrib>Molley, Thomas G ; Jiang, Shouyuan ; Ong, Louis ; Kopecky, Chantal ; Ranaweera, Chavinya D ; Jalandhra, Gagan K ; Milton, Laura ; Kardia, Egi ; Zhou, Zeheng ; Rnjak-Kovacina, Jelena ; Waters, Shafagh A ; Toh, Yi-Chin ; Kilian, Kristopher A</creatorcontrib><description>Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2217557120</identifier><identifier>PMID: 37040415</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biocompatible Materials ; Biological Sciences ; Biomaterials ; Biomedical materials ; Cancer ; Capsules ; Cell culture ; Endothelial cells ; Endothelial Cells - metabolism ; Homeostasis ; Humans ; Hydrogels ; Hypoxia ; In vivo methods and tests ; Medical dressings ; Microcapsules ; Microencapsulation ; Morphogenesis ; Organoids ; Oxygen ; Oxygen - metabolism ; Oxygen balance ; Oxygen content ; Physical Sciences ; Replenishment ; Spheroids ; Stem cells ; Vascularization</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (16), p.e2217557120-e2217557120</ispartof><rights>Copyright National Academy of Sciences Apr 18, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-92b68c2c679a1d0db662d48e7de78b188738e2e8a4fd7623da1a1a5018771c8a3</citedby><cites>FETCH-LOGICAL-c422t-92b68c2c679a1d0db662d48e7de78b188738e2e8a4fd7623da1a1a5018771c8a3</cites><orcidid>0000-0003-1144-5411 ; 0000-0002-8963-9796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37040415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molley, Thomas G</creatorcontrib><creatorcontrib>Jiang, Shouyuan</creatorcontrib><creatorcontrib>Ong, Louis</creatorcontrib><creatorcontrib>Kopecky, Chantal</creatorcontrib><creatorcontrib>Ranaweera, Chavinya D</creatorcontrib><creatorcontrib>Jalandhra, Gagan K</creatorcontrib><creatorcontrib>Milton, Laura</creatorcontrib><creatorcontrib>Kardia, Egi</creatorcontrib><creatorcontrib>Zhou, Zeheng</creatorcontrib><creatorcontrib>Rnjak-Kovacina, Jelena</creatorcontrib><creatorcontrib>Waters, Shafagh A</creatorcontrib><creatorcontrib>Toh, Yi-Chin</creatorcontrib><creatorcontrib>Kilian, Kristopher A</creatorcontrib><title>Gas-modulating microcapsules for spatiotemporal control of hypoxia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.</description><subject>Biocompatible Materials</subject><subject>Biological Sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cancer</subject><subject>Capsules</subject><subject>Cell culture</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hypoxia</subject><subject>In vivo methods and tests</subject><subject>Medical dressings</subject><subject>Microcapsules</subject><subject>Microencapsulation</subject><subject>Morphogenesis</subject><subject>Organoids</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen balance</subject><subject>Oxygen content</subject><subject>Physical Sciences</subject><subject>Replenishment</subject><subject>Spheroids</subject><subject>Stem cells</subject><subject>Vascularization</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1PwzAMhiMEYmNw5oYqceHSzUnTJj0hmGAgTeIC5yhL061T2pSkRezfk2ljfMiSffDjV7ZfhC4xjDGwZNI20o8JwSxNGSZwhIYYchxnNIdjNAQgLOaU0AE6834NAHnK4RQNEgYUKE6H6H4mfVzbojeyq5plVFfKWSVb3xvto9K6yLehYztdt9ZJEynbdM6ayJbRatPaz0qeo5NSGq8v9nWE3h4fXqdP8fxl9jy9m8eKEtLFOVlkXBGVsVziAopFlpGCcs0KzfgCc84SronmkpYFy0hSSBwiBcwZw4rLZIRud7ptv6h1oXRYRBrRuqqWbiOsrMTfTlOtxNJ-CAzhNcDyoHCzV3D2vde-E3XllTZGNtr2XhCW5zwkzgN6_Q9d29414T5BOCQpIQxDoCY7KjzNe6fLwzYYxNYgsTVI_BgUJq5-H3Hgvx1JvgDq7I0d</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Molley, Thomas G</creator><creator>Jiang, Shouyuan</creator><creator>Ong, Louis</creator><creator>Kopecky, Chantal</creator><creator>Ranaweera, Chavinya D</creator><creator>Jalandhra, Gagan K</creator><creator>Milton, Laura</creator><creator>Kardia, Egi</creator><creator>Zhou, Zeheng</creator><creator>Rnjak-Kovacina, Jelena</creator><creator>Waters, Shafagh A</creator><creator>Toh, Yi-Chin</creator><creator>Kilian, Kristopher A</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1144-5411</orcidid><orcidid>https://orcid.org/0000-0002-8963-9796</orcidid></search><sort><creationdate>20230418</creationdate><title>Gas-modulating microcapsules for spatiotemporal control of hypoxia</title><author>Molley, Thomas G ; Jiang, Shouyuan ; Ong, Louis ; Kopecky, Chantal ; Ranaweera, Chavinya D ; Jalandhra, Gagan K ; Milton, Laura ; Kardia, Egi ; Zhou, Zeheng ; Rnjak-Kovacina, Jelena ; Waters, Shafagh A ; Toh, Yi-Chin ; Kilian, Kristopher A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-92b68c2c679a1d0db662d48e7de78b188738e2e8a4fd7623da1a1a5018771c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatible Materials</topic><topic>Biological Sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cancer</topic><topic>Capsules</topic><topic>Cell culture</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hypoxia</topic><topic>In vivo methods and tests</topic><topic>Medical dressings</topic><topic>Microcapsules</topic><topic>Microencapsulation</topic><topic>Morphogenesis</topic><topic>Organoids</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen balance</topic><topic>Oxygen content</topic><topic>Physical Sciences</topic><topic>Replenishment</topic><topic>Spheroids</topic><topic>Stem cells</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molley, Thomas G</creatorcontrib><creatorcontrib>Jiang, Shouyuan</creatorcontrib><creatorcontrib>Ong, Louis</creatorcontrib><creatorcontrib>Kopecky, Chantal</creatorcontrib><creatorcontrib>Ranaweera, Chavinya D</creatorcontrib><creatorcontrib>Jalandhra, Gagan K</creatorcontrib><creatorcontrib>Milton, Laura</creatorcontrib><creatorcontrib>Kardia, Egi</creatorcontrib><creatorcontrib>Zhou, Zeheng</creatorcontrib><creatorcontrib>Rnjak-Kovacina, Jelena</creatorcontrib><creatorcontrib>Waters, Shafagh A</creatorcontrib><creatorcontrib>Toh, Yi-Chin</creatorcontrib><creatorcontrib>Kilian, Kristopher A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molley, Thomas G</au><au>Jiang, Shouyuan</au><au>Ong, Louis</au><au>Kopecky, Chantal</au><au>Ranaweera, Chavinya D</au><au>Jalandhra, Gagan K</au><au>Milton, Laura</au><au>Kardia, Egi</au><au>Zhou, Zeheng</au><au>Rnjak-Kovacina, Jelena</au><au>Waters, Shafagh A</au><au>Toh, Yi-Chin</au><au>Kilian, Kristopher A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-modulating microcapsules for spatiotemporal control of hypoxia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-04-18</date><risdate>2023</risdate><volume>120</volume><issue>16</issue><spage>e2217557120</spage><epage>e2217557120</epage><pages>e2217557120-e2217557120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37040415</pmid><doi>10.1073/pnas.2217557120</doi><orcidid>https://orcid.org/0000-0003-1144-5411</orcidid><orcidid>https://orcid.org/0000-0002-8963-9796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (16), p.e2217557120-e2217557120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10120079 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biocompatible Materials Biological Sciences Biomaterials Biomedical materials Cancer Capsules Cell culture Endothelial cells Endothelial Cells - metabolism Homeostasis Humans Hydrogels Hypoxia In vivo methods and tests Medical dressings Microcapsules Microencapsulation Morphogenesis Organoids Oxygen Oxygen - metabolism Oxygen balance Oxygen content Physical Sciences Replenishment Spheroids Stem cells Vascularization |
title | Gas-modulating microcapsules for spatiotemporal control of hypoxia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-modulating%20microcapsules%20for%20spatiotemporal%20control%20of%20hypoxia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Molley,%20Thomas%20G&rft.date=2023-04-18&rft.volume=120&rft.issue=16&rft.spage=e2217557120&rft.epage=e2217557120&rft.pages=e2217557120-e2217557120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2217557120&rft_dat=%3Cproquest_pubme%3E2799827988%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803522710&rft_id=info:pmid/37040415&rfr_iscdi=true |