Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis
The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nucl...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2023-04, Vol.110 (4), p.663-680 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 680 |
---|---|
container_issue | 4 |
container_start_page | 663 |
container_title | American journal of human genetics |
container_volume | 110 |
creator | Frost, F. Graeme Morimoto, Marie Sharma, Prashant Ruaud, Lyse Belnap, Newell Calame, Daniel G. Uchiyama, Yuri Matsumoto, Naomichi Oud, Machteld M. Ferreira, Elise A. Narayanan, Vinodh Rangasamy, Sampath Huentelman, Matt Emrick, Lisa T. Sato-Shirai, Ikuko Kumada, Satoko Wolf, Nicole I. Steinbach, Peter J. Huang, Yan Pusey, Barbara N. Passemard, Sandrine Levy, Jonathan Drunat, Séverine Vincent, Marie Guet, Agnès Agolini, Emanuele Novelli, Antonio Digilio, Maria Cristina Rosenfeld, Jill A. Murphy, Jennifer L. Lupski, James R. Vezina, Gilbert Macnamara, Ellen F. Adams, David R. Acosta, Maria T. Tifft, Cynthia J. Gahl, William A. Malicdan, May Christine V. |
description | The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.
[Display omitted]
Frost et al. demonstrate that a neurodevelopmental disorder is associated with deleterious bi-allelic variants in SNAPC4, which encodes a protein required for the transcription of spliceosomal small nuclear RNAs. These loss-of-function SNAPC4 variants lead to global splicing dysregulation, implicating a potential mechanism for disease pathology. |
doi_str_mv | 10.1016/j.ajhg.2023.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10119142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000292972300085X</els_id><sourcerecordid>2791369886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ca8f7a75c8ac3577f523a777786f65a774d35059bb900518a71b79ee3630f5b83</originalsourceid><addsrcrecordid>eNp9UcGKFDEUDKK4s6s_4EFy9NJj0ukk3SDIOugqLCqo5_A6_bo3Q6YzJumBvfrlZnbWRS-GF5LwquqFKkJecLbmjKvX2zVsb6Z1zWqxZqUYf0RWXApdKcXkY7JijNVVV3f6jJyntC0A3jLxlJwJ1SnZ6HZFfr1zFXiP3ln67fPl101DDxAdzDnR4TZFnBYPGenkQw-egs8YZ8jugDTtC8nNE4V5oB5hoDnQGZcYCitiSi7Md719DKf3HQlSLrP2EKFsTC49I09G8Amf358X5MeH9983H6vrL1efNpfXlW2kypWFdtSgpW3BCqn1KGsBuqxWjUqWWzMIyWTX9x1jkregea87RKEEG2Xfigvy9qS7X_odDhbnHMGbfXQ7iLcmgDP_dmZ3Y6ZwMMVs3vGmLgqv7hVi-LlgymbnkkXvYcawJFPrjhdr21YVaH2C2hhSsXF8mMPZUVCZrTmmZ47pGVaK8UJ6-fcPHyh_4iqANycAFp8ODqNJ1uFscXARbTZDcP_T_w3zt66_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791369886</pqid></control><display><type>article</type><title>Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Open Access: Cell Press Free Archives</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Frost, F. Graeme ; Morimoto, Marie ; Sharma, Prashant ; Ruaud, Lyse ; Belnap, Newell ; Calame, Daniel G. ; Uchiyama, Yuri ; Matsumoto, Naomichi ; Oud, Machteld M. ; Ferreira, Elise A. ; Narayanan, Vinodh ; Rangasamy, Sampath ; Huentelman, Matt ; Emrick, Lisa T. ; Sato-Shirai, Ikuko ; Kumada, Satoko ; Wolf, Nicole I. ; Steinbach, Peter J. ; Huang, Yan ; Pusey, Barbara N. ; Passemard, Sandrine ; Levy, Jonathan ; Drunat, Séverine ; Vincent, Marie ; Guet, Agnès ; Agolini, Emanuele ; Novelli, Antonio ; Digilio, Maria Cristina ; Rosenfeld, Jill A. ; Murphy, Jennifer L. ; Lupski, James R. ; Vezina, Gilbert ; Macnamara, Ellen F. ; Adams, David R. ; Acosta, Maria T. ; Tifft, Cynthia J. ; Gahl, William A. ; Malicdan, May Christine V.</creator><creatorcontrib>Frost, F. Graeme ; Morimoto, Marie ; Sharma, Prashant ; Ruaud, Lyse ; Belnap, Newell ; Calame, Daniel G. ; Uchiyama, Yuri ; Matsumoto, Naomichi ; Oud, Machteld M. ; Ferreira, Elise A. ; Narayanan, Vinodh ; Rangasamy, Sampath ; Huentelman, Matt ; Emrick, Lisa T. ; Sato-Shirai, Ikuko ; Kumada, Satoko ; Wolf, Nicole I. ; Steinbach, Peter J. ; Huang, Yan ; Pusey, Barbara N. ; Passemard, Sandrine ; Levy, Jonathan ; Drunat, Séverine ; Vincent, Marie ; Guet, Agnès ; Agolini, Emanuele ; Novelli, Antonio ; Digilio, Maria Cristina ; Rosenfeld, Jill A. ; Murphy, Jennifer L. ; Lupski, James R. ; Vezina, Gilbert ; Macnamara, Ellen F. ; Adams, David R. ; Acosta, Maria T. ; Tifft, Cynthia J. ; Gahl, William A. ; Malicdan, May Christine V. ; Undiagnosed Diseases Network</creatorcontrib><description>The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.
[Display omitted]
Frost et al. demonstrate that a neurodevelopmental disorder is associated with deleterious bi-allelic variants in SNAPC4, which encodes a protein required for the transcription of spliceosomal small nuclear RNAs. These loss-of-function SNAPC4 variants lead to global splicing dysregulation, implicating a potential mechanism for disease pathology.</description><identifier>ISSN: 0002-9297</identifier><identifier>ISSN: 1537-6605</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2023.03.001</identifier><identifier>PMID: 36965478</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Alleles ; Alternative Splicing ; Child ; Child, Preschool ; DNA-Binding Proteins - genetics ; Female ; gene discovery ; HeLa Cells ; Humans ; Infant ; Male ; Mendelian disorder ; monogenic diseases ; Paraparesis, Spastic - genetics ; Pedigree ; progressive spasticity ; Protein Isoforms - genetics ; Protein Structure, Secondary ; rare diseases ; RNA, Small Nuclear - genetics ; RNA-Seq ; spliceosome ; Transcription Factors - genetics</subject><ispartof>American journal of human genetics, 2023-04, Vol.110 (4), p.663-680</ispartof><rights>2023</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ca8f7a75c8ac3577f523a777786f65a774d35059bb900518a71b79ee3630f5b83</citedby><cites>FETCH-LOGICAL-c456t-ca8f7a75c8ac3577f523a777786f65a774d35059bb900518a71b79ee3630f5b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119142/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000292972300085X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36965478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frost, F. Graeme</creatorcontrib><creatorcontrib>Morimoto, Marie</creatorcontrib><creatorcontrib>Sharma, Prashant</creatorcontrib><creatorcontrib>Ruaud, Lyse</creatorcontrib><creatorcontrib>Belnap, Newell</creatorcontrib><creatorcontrib>Calame, Daniel G.</creatorcontrib><creatorcontrib>Uchiyama, Yuri</creatorcontrib><creatorcontrib>Matsumoto, Naomichi</creatorcontrib><creatorcontrib>Oud, Machteld M.</creatorcontrib><creatorcontrib>Ferreira, Elise A.</creatorcontrib><creatorcontrib>Narayanan, Vinodh</creatorcontrib><creatorcontrib>Rangasamy, Sampath</creatorcontrib><creatorcontrib>Huentelman, Matt</creatorcontrib><creatorcontrib>Emrick, Lisa T.</creatorcontrib><creatorcontrib>Sato-Shirai, Ikuko</creatorcontrib><creatorcontrib>Kumada, Satoko</creatorcontrib><creatorcontrib>Wolf, Nicole I.</creatorcontrib><creatorcontrib>Steinbach, Peter J.</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Pusey, Barbara N.</creatorcontrib><creatorcontrib>Passemard, Sandrine</creatorcontrib><creatorcontrib>Levy, Jonathan</creatorcontrib><creatorcontrib>Drunat, Séverine</creatorcontrib><creatorcontrib>Vincent, Marie</creatorcontrib><creatorcontrib>Guet, Agnès</creatorcontrib><creatorcontrib>Agolini, Emanuele</creatorcontrib><creatorcontrib>Novelli, Antonio</creatorcontrib><creatorcontrib>Digilio, Maria Cristina</creatorcontrib><creatorcontrib>Rosenfeld, Jill A.</creatorcontrib><creatorcontrib>Murphy, Jennifer L.</creatorcontrib><creatorcontrib>Lupski, James R.</creatorcontrib><creatorcontrib>Vezina, Gilbert</creatorcontrib><creatorcontrib>Macnamara, Ellen F.</creatorcontrib><creatorcontrib>Adams, David R.</creatorcontrib><creatorcontrib>Acosta, Maria T.</creatorcontrib><creatorcontrib>Tifft, Cynthia J.</creatorcontrib><creatorcontrib>Gahl, William A.</creatorcontrib><creatorcontrib>Malicdan, May Christine V.</creatorcontrib><creatorcontrib>Undiagnosed Diseases Network</creatorcontrib><title>Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.
[Display omitted]
Frost et al. demonstrate that a neurodevelopmental disorder is associated with deleterious bi-allelic variants in SNAPC4, which encodes a protein required for the transcription of spliceosomal small nuclear RNAs. These loss-of-function SNAPC4 variants lead to global splicing dysregulation, implicating a potential mechanism for disease pathology.</description><subject>Adolescent</subject><subject>Alleles</subject><subject>Alternative Splicing</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Female</subject><subject>gene discovery</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Infant</subject><subject>Male</subject><subject>Mendelian disorder</subject><subject>monogenic diseases</subject><subject>Paraparesis, Spastic - genetics</subject><subject>Pedigree</subject><subject>progressive spasticity</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Structure, Secondary</subject><subject>rare diseases</subject><subject>RNA, Small Nuclear - genetics</subject><subject>RNA-Seq</subject><subject>spliceosome</subject><subject>Transcription Factors - genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcGKFDEUDKK4s6s_4EFy9NJj0ukk3SDIOugqLCqo5_A6_bo3Q6YzJumBvfrlZnbWRS-GF5LwquqFKkJecLbmjKvX2zVsb6Z1zWqxZqUYf0RWXApdKcXkY7JijNVVV3f6jJyntC0A3jLxlJwJ1SnZ6HZFfr1zFXiP3ln67fPl101DDxAdzDnR4TZFnBYPGenkQw-egs8YZ8jugDTtC8nNE4V5oB5hoDnQGZcYCitiSi7Md719DKf3HQlSLrP2EKFsTC49I09G8Amf358X5MeH9983H6vrL1efNpfXlW2kypWFdtSgpW3BCqn1KGsBuqxWjUqWWzMIyWTX9x1jkregea87RKEEG2Xfigvy9qS7X_odDhbnHMGbfXQ7iLcmgDP_dmZ3Y6ZwMMVs3vGmLgqv7hVi-LlgymbnkkXvYcawJFPrjhdr21YVaH2C2hhSsXF8mMPZUVCZrTmmZ47pGVaK8UJ6-fcPHyh_4iqANycAFp8ODqNJ1uFscXARbTZDcP_T_w3zt66_</recordid><startdate>20230406</startdate><enddate>20230406</enddate><creator>Frost, F. Graeme</creator><creator>Morimoto, Marie</creator><creator>Sharma, Prashant</creator><creator>Ruaud, Lyse</creator><creator>Belnap, Newell</creator><creator>Calame, Daniel G.</creator><creator>Uchiyama, Yuri</creator><creator>Matsumoto, Naomichi</creator><creator>Oud, Machteld M.</creator><creator>Ferreira, Elise A.</creator><creator>Narayanan, Vinodh</creator><creator>Rangasamy, Sampath</creator><creator>Huentelman, Matt</creator><creator>Emrick, Lisa T.</creator><creator>Sato-Shirai, Ikuko</creator><creator>Kumada, Satoko</creator><creator>Wolf, Nicole I.</creator><creator>Steinbach, Peter J.</creator><creator>Huang, Yan</creator><creator>Pusey, Barbara N.</creator><creator>Passemard, Sandrine</creator><creator>Levy, Jonathan</creator><creator>Drunat, Séverine</creator><creator>Vincent, Marie</creator><creator>Guet, Agnès</creator><creator>Agolini, Emanuele</creator><creator>Novelli, Antonio</creator><creator>Digilio, Maria Cristina</creator><creator>Rosenfeld, Jill A.</creator><creator>Murphy, Jennifer L.</creator><creator>Lupski, James R.</creator><creator>Vezina, Gilbert</creator><creator>Macnamara, Ellen F.</creator><creator>Adams, David R.</creator><creator>Acosta, Maria T.</creator><creator>Tifft, Cynthia J.</creator><creator>Gahl, William A.</creator><creator>Malicdan, May Christine V.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230406</creationdate><title>Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis</title><author>Frost, F. Graeme ; Morimoto, Marie ; Sharma, Prashant ; Ruaud, Lyse ; Belnap, Newell ; Calame, Daniel G. ; Uchiyama, Yuri ; Matsumoto, Naomichi ; Oud, Machteld M. ; Ferreira, Elise A. ; Narayanan, Vinodh ; Rangasamy, Sampath ; Huentelman, Matt ; Emrick, Lisa T. ; Sato-Shirai, Ikuko ; Kumada, Satoko ; Wolf, Nicole I. ; Steinbach, Peter J. ; Huang, Yan ; Pusey, Barbara N. ; Passemard, Sandrine ; Levy, Jonathan ; Drunat, Séverine ; Vincent, Marie ; Guet, Agnès ; Agolini, Emanuele ; Novelli, Antonio ; Digilio, Maria Cristina ; Rosenfeld, Jill A. ; Murphy, Jennifer L. ; Lupski, James R. ; Vezina, Gilbert ; Macnamara, Ellen F. ; Adams, David R. ; Acosta, Maria T. ; Tifft, Cynthia J. ; Gahl, William A. ; Malicdan, May Christine V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ca8f7a75c8ac3577f523a777786f65a774d35059bb900518a71b79ee3630f5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adolescent</topic><topic>Alleles</topic><topic>Alternative Splicing</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Female</topic><topic>gene discovery</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Infant</topic><topic>Male</topic><topic>Mendelian disorder</topic><topic>monogenic diseases</topic><topic>Paraparesis, Spastic - genetics</topic><topic>Pedigree</topic><topic>progressive spasticity</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Structure, Secondary</topic><topic>rare diseases</topic><topic>RNA, Small Nuclear - genetics</topic><topic>RNA-Seq</topic><topic>spliceosome</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frost, F. Graeme</creatorcontrib><creatorcontrib>Morimoto, Marie</creatorcontrib><creatorcontrib>Sharma, Prashant</creatorcontrib><creatorcontrib>Ruaud, Lyse</creatorcontrib><creatorcontrib>Belnap, Newell</creatorcontrib><creatorcontrib>Calame, Daniel G.</creatorcontrib><creatorcontrib>Uchiyama, Yuri</creatorcontrib><creatorcontrib>Matsumoto, Naomichi</creatorcontrib><creatorcontrib>Oud, Machteld M.</creatorcontrib><creatorcontrib>Ferreira, Elise A.</creatorcontrib><creatorcontrib>Narayanan, Vinodh</creatorcontrib><creatorcontrib>Rangasamy, Sampath</creatorcontrib><creatorcontrib>Huentelman, Matt</creatorcontrib><creatorcontrib>Emrick, Lisa T.</creatorcontrib><creatorcontrib>Sato-Shirai, Ikuko</creatorcontrib><creatorcontrib>Kumada, Satoko</creatorcontrib><creatorcontrib>Wolf, Nicole I.</creatorcontrib><creatorcontrib>Steinbach, Peter J.</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Pusey, Barbara N.</creatorcontrib><creatorcontrib>Passemard, Sandrine</creatorcontrib><creatorcontrib>Levy, Jonathan</creatorcontrib><creatorcontrib>Drunat, Séverine</creatorcontrib><creatorcontrib>Vincent, Marie</creatorcontrib><creatorcontrib>Guet, Agnès</creatorcontrib><creatorcontrib>Agolini, Emanuele</creatorcontrib><creatorcontrib>Novelli, Antonio</creatorcontrib><creatorcontrib>Digilio, Maria Cristina</creatorcontrib><creatorcontrib>Rosenfeld, Jill A.</creatorcontrib><creatorcontrib>Murphy, Jennifer L.</creatorcontrib><creatorcontrib>Lupski, James R.</creatorcontrib><creatorcontrib>Vezina, Gilbert</creatorcontrib><creatorcontrib>Macnamara, Ellen F.</creatorcontrib><creatorcontrib>Adams, David R.</creatorcontrib><creatorcontrib>Acosta, Maria T.</creatorcontrib><creatorcontrib>Tifft, Cynthia J.</creatorcontrib><creatorcontrib>Gahl, William A.</creatorcontrib><creatorcontrib>Malicdan, May Christine V.</creatorcontrib><creatorcontrib>Undiagnosed Diseases Network</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frost, F. Graeme</au><au>Morimoto, Marie</au><au>Sharma, Prashant</au><au>Ruaud, Lyse</au><au>Belnap, Newell</au><au>Calame, Daniel G.</au><au>Uchiyama, Yuri</au><au>Matsumoto, Naomichi</au><au>Oud, Machteld M.</au><au>Ferreira, Elise A.</au><au>Narayanan, Vinodh</au><au>Rangasamy, Sampath</au><au>Huentelman, Matt</au><au>Emrick, Lisa T.</au><au>Sato-Shirai, Ikuko</au><au>Kumada, Satoko</au><au>Wolf, Nicole I.</au><au>Steinbach, Peter J.</au><au>Huang, Yan</au><au>Pusey, Barbara N.</au><au>Passemard, Sandrine</au><au>Levy, Jonathan</au><au>Drunat, Séverine</au><au>Vincent, Marie</au><au>Guet, Agnès</au><au>Agolini, Emanuele</au><au>Novelli, Antonio</au><au>Digilio, Maria Cristina</au><au>Rosenfeld, Jill A.</au><au>Murphy, Jennifer L.</au><au>Lupski, James R.</au><au>Vezina, Gilbert</au><au>Macnamara, Ellen F.</au><au>Adams, David R.</au><au>Acosta, Maria T.</au><au>Tifft, Cynthia J.</au><au>Gahl, William A.</au><au>Malicdan, May Christine V.</au><aucorp>Undiagnosed Diseases Network</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2023-04-06</date><risdate>2023</risdate><volume>110</volume><issue>4</issue><spage>663</spage><epage>680</epage><pages>663-680</pages><issn>0002-9297</issn><issn>1537-6605</issn><eissn>1537-6605</eissn><abstract>The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.
[Display omitted]
Frost et al. demonstrate that a neurodevelopmental disorder is associated with deleterious bi-allelic variants in SNAPC4, which encodes a protein required for the transcription of spliceosomal small nuclear RNAs. These loss-of-function SNAPC4 variants lead to global splicing dysregulation, implicating a potential mechanism for disease pathology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36965478</pmid><doi>10.1016/j.ajhg.2023.03.001</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2023-04, Vol.110 (4), p.663-680 |
issn | 0002-9297 1537-6605 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10119142 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Open Access: Cell Press Free Archives; PubMed Central; EZB Electronic Journals Library |
subjects | Adolescent Alleles Alternative Splicing Child Child, Preschool DNA-Binding Proteins - genetics Female gene discovery HeLa Cells Humans Infant Male Mendelian disorder monogenic diseases Paraparesis, Spastic - genetics Pedigree progressive spasticity Protein Isoforms - genetics Protein Structure, Secondary rare diseases RNA, Small Nuclear - genetics RNA-Seq spliceosome Transcription Factors - genetics |
title | Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi-allelic%20SNAPC4%20variants%20dysregulate%20global%20alternative%20splicing%20and%20lead%20to%20neuroregression%20and%20progressive%20spastic%20paraparesis&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Frost,%20F.%20Graeme&rft.aucorp=Undiagnosed%20Diseases%20Network&rft.date=2023-04-06&rft.volume=110&rft.issue=4&rft.spage=663&rft.epage=680&rft.pages=663-680&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2023.03.001&rft_dat=%3Cproquest_pubme%3E2791369886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791369886&rft_id=info:pmid/36965478&rft_els_id=S000292972300085X&rfr_iscdi=true |