Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nucl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2023-04, Vol.110 (4), p.663-680
Hauptverfasser: Frost, F. Graeme, Morimoto, Marie, Sharma, Prashant, Ruaud, Lyse, Belnap, Newell, Calame, Daniel G., Uchiyama, Yuri, Matsumoto, Naomichi, Oud, Machteld M., Ferreira, Elise A., Narayanan, Vinodh, Rangasamy, Sampath, Huentelman, Matt, Emrick, Lisa T., Sato-Shirai, Ikuko, Kumada, Satoko, Wolf, Nicole I., Steinbach, Peter J., Huang, Yan, Pusey, Barbara N., Passemard, Sandrine, Levy, Jonathan, Drunat, Séverine, Vincent, Marie, Guet, Agnès, Agolini, Emanuele, Novelli, Antonio, Digilio, Maria Cristina, Rosenfeld, Jill A., Murphy, Jennifer L., Lupski, James R., Vezina, Gilbert, Macnamara, Ellen F., Adams, David R., Acosta, Maria T., Tifft, Cynthia J., Gahl, William A., Malicdan, May Christine V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue 4
container_start_page 663
container_title American journal of human genetics
container_volume 110
creator Frost, F. Graeme
Morimoto, Marie
Sharma, Prashant
Ruaud, Lyse
Belnap, Newell
Calame, Daniel G.
Uchiyama, Yuri
Matsumoto, Naomichi
Oud, Machteld M.
Ferreira, Elise A.
Narayanan, Vinodh
Rangasamy, Sampath
Huentelman, Matt
Emrick, Lisa T.
Sato-Shirai, Ikuko
Kumada, Satoko
Wolf, Nicole I.
Steinbach, Peter J.
Huang, Yan
Pusey, Barbara N.
Passemard, Sandrine
Levy, Jonathan
Drunat, Séverine
Vincent, Marie
Guet, Agnès
Agolini, Emanuele
Novelli, Antonio
Digilio, Maria Cristina
Rosenfeld, Jill A.
Murphy, Jennifer L.
Lupski, James R.
Vezina, Gilbert
Macnamara, Ellen F.
Adams, David R.
Acosta, Maria T.
Tifft, Cynthia J.
Gahl, William A.
Malicdan, May Christine V.
description The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals. [Display omitted] Frost et al. demonstrate that a neurodevelopmental disorder is associated with deleterious bi-allelic variants in SNAPC4, which encodes a protein required for the transcription of spliceosomal small nuclear RNAs. These loss-of-function SNAPC4 variants lead to global splicing dysregulation, implicating a potential mechanism for disease pathology.
doi_str_mv 10.1016/j.ajhg.2023.03.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10119142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000292972300085X</els_id><sourcerecordid>2791369886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ca8f7a75c8ac3577f523a777786f65a774d35059bb900518a71b79ee3630f5b83</originalsourceid><addsrcrecordid>eNp9UcGKFDEUDKK4s6s_4EFy9NJj0ukk3SDIOugqLCqo5_A6_bo3Q6YzJumBvfrlZnbWRS-GF5LwquqFKkJecLbmjKvX2zVsb6Z1zWqxZqUYf0RWXApdKcXkY7JijNVVV3f6jJyntC0A3jLxlJwJ1SnZ6HZFfr1zFXiP3ln67fPl101DDxAdzDnR4TZFnBYPGenkQw-egs8YZ8jugDTtC8nNE4V5oB5hoDnQGZcYCitiSi7Md719DKf3HQlSLrP2EKFsTC49I09G8Amf358X5MeH9983H6vrL1efNpfXlW2kypWFdtSgpW3BCqn1KGsBuqxWjUqWWzMIyWTX9x1jkregea87RKEEG2Xfigvy9qS7X_odDhbnHMGbfXQ7iLcmgDP_dmZ3Y6ZwMMVs3vGmLgqv7hVi-LlgymbnkkXvYcawJFPrjhdr21YVaH2C2hhSsXF8mMPZUVCZrTmmZ47pGVaK8UJ6-fcPHyh_4iqANycAFp8ODqNJ1uFscXARbTZDcP_T_w3zt66_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791369886</pqid></control><display><type>article</type><title>Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Open Access: Cell Press Free Archives</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Frost, F. Graeme ; Morimoto, Marie ; Sharma, Prashant ; Ruaud, Lyse ; Belnap, Newell ; Calame, Daniel G. ; Uchiyama, Yuri ; Matsumoto, Naomichi ; Oud, Machteld M. ; Ferreira, Elise A. ; Narayanan, Vinodh ; Rangasamy, Sampath ; Huentelman, Matt ; Emrick, Lisa T. ; Sato-Shirai, Ikuko ; Kumada, Satoko ; Wolf, Nicole I. ; Steinbach, Peter J. ; Huang, Yan ; Pusey, Barbara N. ; Passemard, Sandrine ; Levy, Jonathan ; Drunat, Séverine ; Vincent, Marie ; Guet, Agnès ; Agolini, Emanuele ; Novelli, Antonio ; Digilio, Maria Cristina ; Rosenfeld, Jill A. ; Murphy, Jennifer L. ; Lupski, James R. ; Vezina, Gilbert ; Macnamara, Ellen F. ; Adams, David R. ; Acosta, Maria T. ; Tifft, Cynthia J. ; Gahl, William A. ; Malicdan, May Christine V.</creator><creatorcontrib>Frost, F. Graeme ; Morimoto, Marie ; Sharma, Prashant ; Ruaud, Lyse ; Belnap, Newell ; Calame, Daniel G. ; Uchiyama, Yuri ; Matsumoto, Naomichi ; Oud, Machteld M. ; Ferreira, Elise A. ; Narayanan, Vinodh ; Rangasamy, Sampath ; Huentelman, Matt ; Emrick, Lisa T. ; Sato-Shirai, Ikuko ; Kumada, Satoko ; Wolf, Nicole I. ; Steinbach, Peter J. ; Huang, Yan ; Pusey, Barbara N. ; Passemard, Sandrine ; Levy, Jonathan ; Drunat, Séverine ; Vincent, Marie ; Guet, Agnès ; Agolini, Emanuele ; Novelli, Antonio ; Digilio, Maria Cristina ; Rosenfeld, Jill A. ; Murphy, Jennifer L. ; Lupski, James R. ; Vezina, Gilbert ; Macnamara, Ellen F. ; Adams, David R. ; Acosta, Maria T. ; Tifft, Cynthia J. ; Gahl, William A. ; Malicdan, May Christine V. ; Undiagnosed Diseases Network</creatorcontrib><description>The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals. [Display omitted] Frost et al. demonstrate that a neurodevelopmental disorder is associated with deleterious bi-allelic variants in SNAPC4, which encodes a protein required for the transcription of spliceosomal small nuclear RNAs. These loss-of-function SNAPC4 variants lead to global splicing dysregulation, implicating a potential mechanism for disease pathology.</description><identifier>ISSN: 0002-9297</identifier><identifier>ISSN: 1537-6605</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2023.03.001</identifier><identifier>PMID: 36965478</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Alleles ; Alternative Splicing ; Child ; Child, Preschool ; DNA-Binding Proteins - genetics ; Female ; gene discovery ; HeLa Cells ; Humans ; Infant ; Male ; Mendelian disorder ; monogenic diseases ; Paraparesis, Spastic - genetics ; Pedigree ; progressive spasticity ; Protein Isoforms - genetics ; Protein Structure, Secondary ; rare diseases ; RNA, Small Nuclear - genetics ; RNA-Seq ; spliceosome ; Transcription Factors - genetics</subject><ispartof>American journal of human genetics, 2023-04, Vol.110 (4), p.663-680</ispartof><rights>2023</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ca8f7a75c8ac3577f523a777786f65a774d35059bb900518a71b79ee3630f5b83</citedby><cites>FETCH-LOGICAL-c456t-ca8f7a75c8ac3577f523a777786f65a774d35059bb900518a71b79ee3630f5b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119142/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000292972300085X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36965478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frost, F. Graeme</creatorcontrib><creatorcontrib>Morimoto, Marie</creatorcontrib><creatorcontrib>Sharma, Prashant</creatorcontrib><creatorcontrib>Ruaud, Lyse</creatorcontrib><creatorcontrib>Belnap, Newell</creatorcontrib><creatorcontrib>Calame, Daniel G.</creatorcontrib><creatorcontrib>Uchiyama, Yuri</creatorcontrib><creatorcontrib>Matsumoto, Naomichi</creatorcontrib><creatorcontrib>Oud, Machteld M.</creatorcontrib><creatorcontrib>Ferreira, Elise A.</creatorcontrib><creatorcontrib>Narayanan, Vinodh</creatorcontrib><creatorcontrib>Rangasamy, Sampath</creatorcontrib><creatorcontrib>Huentelman, Matt</creatorcontrib><creatorcontrib>Emrick, Lisa T.</creatorcontrib><creatorcontrib>Sato-Shirai, Ikuko</creatorcontrib><creatorcontrib>Kumada, Satoko</creatorcontrib><creatorcontrib>Wolf, Nicole I.</creatorcontrib><creatorcontrib>Steinbach, Peter J.</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Pusey, Barbara N.</creatorcontrib><creatorcontrib>Passemard, Sandrine</creatorcontrib><creatorcontrib>Levy, Jonathan</creatorcontrib><creatorcontrib>Drunat, Séverine</creatorcontrib><creatorcontrib>Vincent, Marie</creatorcontrib><creatorcontrib>Guet, Agnès</creatorcontrib><creatorcontrib>Agolini, Emanuele</creatorcontrib><creatorcontrib>Novelli, Antonio</creatorcontrib><creatorcontrib>Digilio, Maria Cristina</creatorcontrib><creatorcontrib>Rosenfeld, Jill A.</creatorcontrib><creatorcontrib>Murphy, Jennifer L.</creatorcontrib><creatorcontrib>Lupski, James R.</creatorcontrib><creatorcontrib>Vezina, Gilbert</creatorcontrib><creatorcontrib>Macnamara, Ellen F.</creatorcontrib><creatorcontrib>Adams, David R.</creatorcontrib><creatorcontrib>Acosta, Maria T.</creatorcontrib><creatorcontrib>Tifft, Cynthia J.</creatorcontrib><creatorcontrib>Gahl, William A.</creatorcontrib><creatorcontrib>Malicdan, May Christine V.</creatorcontrib><creatorcontrib>Undiagnosed Diseases Network</creatorcontrib><title>Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals. [Display omitted] Frost et al. demonstrate that a neurodevelopmental disorder is associated with deleterious bi-allelic variants in SNAPC4, which encodes a protein required for the transcription of spliceosomal small nuclear RNAs. These loss-of-function SNAPC4 variants lead to global splicing dysregulation, implicating a potential mechanism for disease pathology.</description><subject>Adolescent</subject><subject>Alleles</subject><subject>Alternative Splicing</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Female</subject><subject>gene discovery</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Infant</subject><subject>Male</subject><subject>Mendelian disorder</subject><subject>monogenic diseases</subject><subject>Paraparesis, Spastic - genetics</subject><subject>Pedigree</subject><subject>progressive spasticity</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Structure, Secondary</subject><subject>rare diseases</subject><subject>RNA, Small Nuclear - genetics</subject><subject>RNA-Seq</subject><subject>spliceosome</subject><subject>Transcription Factors - genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcGKFDEUDKK4s6s_4EFy9NJj0ukk3SDIOugqLCqo5_A6_bo3Q6YzJumBvfrlZnbWRS-GF5LwquqFKkJecLbmjKvX2zVsb6Z1zWqxZqUYf0RWXApdKcXkY7JijNVVV3f6jJyntC0A3jLxlJwJ1SnZ6HZFfr1zFXiP3ln67fPl101DDxAdzDnR4TZFnBYPGenkQw-egs8YZ8jugDTtC8nNE4V5oB5hoDnQGZcYCitiSi7Md719DKf3HQlSLrP2EKFsTC49I09G8Amf358X5MeH9983H6vrL1efNpfXlW2kypWFdtSgpW3BCqn1KGsBuqxWjUqWWzMIyWTX9x1jkregea87RKEEG2Xfigvy9qS7X_odDhbnHMGbfXQ7iLcmgDP_dmZ3Y6ZwMMVs3vGmLgqv7hVi-LlgymbnkkXvYcawJFPrjhdr21YVaH2C2hhSsXF8mMPZUVCZrTmmZ47pGVaK8UJ6-fcPHyh_4iqANycAFp8ODqNJ1uFscXARbTZDcP_T_w3zt66_</recordid><startdate>20230406</startdate><enddate>20230406</enddate><creator>Frost, F. Graeme</creator><creator>Morimoto, Marie</creator><creator>Sharma, Prashant</creator><creator>Ruaud, Lyse</creator><creator>Belnap, Newell</creator><creator>Calame, Daniel G.</creator><creator>Uchiyama, Yuri</creator><creator>Matsumoto, Naomichi</creator><creator>Oud, Machteld M.</creator><creator>Ferreira, Elise A.</creator><creator>Narayanan, Vinodh</creator><creator>Rangasamy, Sampath</creator><creator>Huentelman, Matt</creator><creator>Emrick, Lisa T.</creator><creator>Sato-Shirai, Ikuko</creator><creator>Kumada, Satoko</creator><creator>Wolf, Nicole I.</creator><creator>Steinbach, Peter J.</creator><creator>Huang, Yan</creator><creator>Pusey, Barbara N.</creator><creator>Passemard, Sandrine</creator><creator>Levy, Jonathan</creator><creator>Drunat, Séverine</creator><creator>Vincent, Marie</creator><creator>Guet, Agnès</creator><creator>Agolini, Emanuele</creator><creator>Novelli, Antonio</creator><creator>Digilio, Maria Cristina</creator><creator>Rosenfeld, Jill A.</creator><creator>Murphy, Jennifer L.</creator><creator>Lupski, James R.</creator><creator>Vezina, Gilbert</creator><creator>Macnamara, Ellen F.</creator><creator>Adams, David R.</creator><creator>Acosta, Maria T.</creator><creator>Tifft, Cynthia J.</creator><creator>Gahl, William A.</creator><creator>Malicdan, May Christine V.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230406</creationdate><title>Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis</title><author>Frost, F. Graeme ; Morimoto, Marie ; Sharma, Prashant ; Ruaud, Lyse ; Belnap, Newell ; Calame, Daniel G. ; Uchiyama, Yuri ; Matsumoto, Naomichi ; Oud, Machteld M. ; Ferreira, Elise A. ; Narayanan, Vinodh ; Rangasamy, Sampath ; Huentelman, Matt ; Emrick, Lisa T. ; Sato-Shirai, Ikuko ; Kumada, Satoko ; Wolf, Nicole I. ; Steinbach, Peter J. ; Huang, Yan ; Pusey, Barbara N. ; Passemard, Sandrine ; Levy, Jonathan ; Drunat, Séverine ; Vincent, Marie ; Guet, Agnès ; Agolini, Emanuele ; Novelli, Antonio ; Digilio, Maria Cristina ; Rosenfeld, Jill A. ; Murphy, Jennifer L. ; Lupski, James R. ; Vezina, Gilbert ; Macnamara, Ellen F. ; Adams, David R. ; Acosta, Maria T. ; Tifft, Cynthia J. ; Gahl, William A. ; Malicdan, May Christine V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ca8f7a75c8ac3577f523a777786f65a774d35059bb900518a71b79ee3630f5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adolescent</topic><topic>Alleles</topic><topic>Alternative Splicing</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Female</topic><topic>gene discovery</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Infant</topic><topic>Male</topic><topic>Mendelian disorder</topic><topic>monogenic diseases</topic><topic>Paraparesis, Spastic - genetics</topic><topic>Pedigree</topic><topic>progressive spasticity</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Structure, Secondary</topic><topic>rare diseases</topic><topic>RNA, Small Nuclear - genetics</topic><topic>RNA-Seq</topic><topic>spliceosome</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frost, F. Graeme</creatorcontrib><creatorcontrib>Morimoto, Marie</creatorcontrib><creatorcontrib>Sharma, Prashant</creatorcontrib><creatorcontrib>Ruaud, Lyse</creatorcontrib><creatorcontrib>Belnap, Newell</creatorcontrib><creatorcontrib>Calame, Daniel G.</creatorcontrib><creatorcontrib>Uchiyama, Yuri</creatorcontrib><creatorcontrib>Matsumoto, Naomichi</creatorcontrib><creatorcontrib>Oud, Machteld M.</creatorcontrib><creatorcontrib>Ferreira, Elise A.</creatorcontrib><creatorcontrib>Narayanan, Vinodh</creatorcontrib><creatorcontrib>Rangasamy, Sampath</creatorcontrib><creatorcontrib>Huentelman, Matt</creatorcontrib><creatorcontrib>Emrick, Lisa T.</creatorcontrib><creatorcontrib>Sato-Shirai, Ikuko</creatorcontrib><creatorcontrib>Kumada, Satoko</creatorcontrib><creatorcontrib>Wolf, Nicole I.</creatorcontrib><creatorcontrib>Steinbach, Peter J.</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Pusey, Barbara N.</creatorcontrib><creatorcontrib>Passemard, Sandrine</creatorcontrib><creatorcontrib>Levy, Jonathan</creatorcontrib><creatorcontrib>Drunat, Séverine</creatorcontrib><creatorcontrib>Vincent, Marie</creatorcontrib><creatorcontrib>Guet, Agnès</creatorcontrib><creatorcontrib>Agolini, Emanuele</creatorcontrib><creatorcontrib>Novelli, Antonio</creatorcontrib><creatorcontrib>Digilio, Maria Cristina</creatorcontrib><creatorcontrib>Rosenfeld, Jill A.</creatorcontrib><creatorcontrib>Murphy, Jennifer L.</creatorcontrib><creatorcontrib>Lupski, James R.</creatorcontrib><creatorcontrib>Vezina, Gilbert</creatorcontrib><creatorcontrib>Macnamara, Ellen F.</creatorcontrib><creatorcontrib>Adams, David R.</creatorcontrib><creatorcontrib>Acosta, Maria T.</creatorcontrib><creatorcontrib>Tifft, Cynthia J.</creatorcontrib><creatorcontrib>Gahl, William A.</creatorcontrib><creatorcontrib>Malicdan, May Christine V.</creatorcontrib><creatorcontrib>Undiagnosed Diseases Network</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frost, F. Graeme</au><au>Morimoto, Marie</au><au>Sharma, Prashant</au><au>Ruaud, Lyse</au><au>Belnap, Newell</au><au>Calame, Daniel G.</au><au>Uchiyama, Yuri</au><au>Matsumoto, Naomichi</au><au>Oud, Machteld M.</au><au>Ferreira, Elise A.</au><au>Narayanan, Vinodh</au><au>Rangasamy, Sampath</au><au>Huentelman, Matt</au><au>Emrick, Lisa T.</au><au>Sato-Shirai, Ikuko</au><au>Kumada, Satoko</au><au>Wolf, Nicole I.</au><au>Steinbach, Peter J.</au><au>Huang, Yan</au><au>Pusey, Barbara N.</au><au>Passemard, Sandrine</au><au>Levy, Jonathan</au><au>Drunat, Séverine</au><au>Vincent, Marie</au><au>Guet, Agnès</au><au>Agolini, Emanuele</au><au>Novelli, Antonio</au><au>Digilio, Maria Cristina</au><au>Rosenfeld, Jill A.</au><au>Murphy, Jennifer L.</au><au>Lupski, James R.</au><au>Vezina, Gilbert</au><au>Macnamara, Ellen F.</au><au>Adams, David R.</au><au>Acosta, Maria T.</au><au>Tifft, Cynthia J.</au><au>Gahl, William A.</au><au>Malicdan, May Christine V.</au><aucorp>Undiagnosed Diseases Network</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2023-04-06</date><risdate>2023</risdate><volume>110</volume><issue>4</issue><spage>663</spage><epage>680</epage><pages>663-680</pages><issn>0002-9297</issn><issn>1537-6605</issn><eissn>1537-6605</eissn><abstract>The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals. [Display omitted] Frost et al. demonstrate that a neurodevelopmental disorder is associated with deleterious bi-allelic variants in SNAPC4, which encodes a protein required for the transcription of spliceosomal small nuclear RNAs. These loss-of-function SNAPC4 variants lead to global splicing dysregulation, implicating a potential mechanism for disease pathology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36965478</pmid><doi>10.1016/j.ajhg.2023.03.001</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2023-04, Vol.110 (4), p.663-680
issn 0002-9297
1537-6605
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10119142
source MEDLINE; Elsevier ScienceDirect Journals Complete; Open Access: Cell Press Free Archives; PubMed Central; EZB Electronic Journals Library
subjects Adolescent
Alleles
Alternative Splicing
Child
Child, Preschool
DNA-Binding Proteins - genetics
Female
gene discovery
HeLa Cells
Humans
Infant
Male
Mendelian disorder
monogenic diseases
Paraparesis, Spastic - genetics
Pedigree
progressive spasticity
Protein Isoforms - genetics
Protein Structure, Secondary
rare diseases
RNA, Small Nuclear - genetics
RNA-Seq
spliceosome
Transcription Factors - genetics
title Bi-allelic SNAPC4 variants dysregulate global alternative splicing and lead to neuroregression and progressive spastic paraparesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi-allelic%20SNAPC4%20variants%20dysregulate%20global%20alternative%20splicing%20and%20lead%20to%20neuroregression%20and%20progressive%20spastic%20paraparesis&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Frost,%20F.%20Graeme&rft.aucorp=Undiagnosed%20Diseases%20Network&rft.date=2023-04-06&rft.volume=110&rft.issue=4&rft.spage=663&rft.epage=680&rft.pages=663-680&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2023.03.001&rft_dat=%3Cproquest_pubme%3E2791369886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791369886&rft_id=info:pmid/36965478&rft_els_id=S000292972300085X&rfr_iscdi=true