Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors

The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-04, Vol.9 (16), p.eadg6618-eadg6618
Hauptverfasser: Shay, Timothy F, Sullivan, Erin E, Ding, Xiaozhe, Chen, Xinhong, Ravindra Kumar, Sripriya, Goertsen, David, Brown, David, Crosby, Anaya, Vielmetter, Jost, Borsos, Máté, Wolfe, Damien A, Lam, Annie W, Gradinaru, Viviana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eadg6618
container_issue 16
container_start_page eadg6618
container_title Science advances
container_volume 9
creator Shay, Timothy F
Sullivan, Erin E
Ding, Xiaozhe
Chen, Xinhong
Ravindra Kumar, Sripriya
Goertsen, David
Brown, David
Crosby, Anaya
Vielmetter, Jost
Borsos, Máté
Wolfe, Damien A
Lam, Annie W
Gradinaru, Viviana
description The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in -deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.
doi_str_mv 10.1126/sciadv.adg6618
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10115422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803966841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-d5f68d858f335570e4c7904994e1ba98a9264df0f00b7c9b7260eb20d4c68ed23</originalsourceid><addsrcrecordid>eNpVkUuPFCEUhYnROJNxti4NSzfVAgUUrIzp-JikE12oiSvC41YPphpGqK6k1_PHpe2eybgCwnfOvTkHodeUrChl8l310YZlZcNWSqqeoUvWD6JjgqvnT-4X6LrW34QQyqUUVL9EF_1ABkEpv0T330rc2Rk6n1OFskDA3haXU_TYpttDKLYCvvnZHgHv9iUm6ArUuUQ_N3bzS64phmTdBNhNOYfOFRsTdraUCAX7kmuNaYvdoWHbJofSdEssdsIL-DmX-gq9GO1U4fp8XqEfnz5-X3_pNl8_36w_bDrfazp3QYxSBSXU2PdCDAS4HzThWnOgzmplNZM8jGQkxA1eu4FJAo6RwL1UEFh_hd6ffO_2bgfBQ5rbFubumEA5mGyj-f8nxVuzzYuhhFLB2dHh7dmh5D_7FoPZxephmmyCvK-GKdJrKRWnDV2d0H8JFBgf51Biju2ZU3vm3F4TvHm63SP-0FX_F4FYmqk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803966841</pqid></control><display><type>article</type><title>Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shay, Timothy F ; Sullivan, Erin E ; Ding, Xiaozhe ; Chen, Xinhong ; Ravindra Kumar, Sripriya ; Goertsen, David ; Brown, David ; Crosby, Anaya ; Vielmetter, Jost ; Borsos, Máté ; Wolfe, Damien A ; Lam, Annie W ; Gradinaru, Viviana</creator><creatorcontrib>Shay, Timothy F ; Sullivan, Erin E ; Ding, Xiaozhe ; Chen, Xinhong ; Ravindra Kumar, Sripriya ; Goertsen, David ; Brown, David ; Crosby, Anaya ; Vielmetter, Jost ; Borsos, Máté ; Wolfe, Damien A ; Lam, Annie W ; Gradinaru, Viviana</creatorcontrib><description>The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in -deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adg6618</identifier><identifier>PMID: 37075114</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Blood-Brain Barrier - metabolism ; Brain - metabolism ; Carbonic Anhydrase IV - genetics ; Carbonic Anhydrase IV - metabolism ; Dependovirus - genetics ; Dependovirus - metabolism ; Gene Transfer Techniques ; Humans ; Mice ; Neuroscience ; Primates - genetics ; SciAdv r-articles</subject><ispartof>Science advances, 2023-04, Vol.9 (16), p.eadg6618-eadg6618</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-d5f68d858f335570e4c7904994e1ba98a9264df0f00b7c9b7260eb20d4c68ed23</citedby><cites>FETCH-LOGICAL-c391t-d5f68d858f335570e4c7904994e1ba98a9264df0f00b7c9b7260eb20d4c68ed23</cites><orcidid>0009-0008-6982-1452 ; 0000-0001-6033-7631 ; 0000-0001-6591-3271 ; 0000-0002-1724-6520 ; 0000-0003-0408-0813 ; 0000-0002-2801-8910 ; 0000-0002-0267-0791 ; 0000-0003-3005-6788 ; 0000-0002-9757-1744 ; 0000-0001-5868-348X ; 0000-0002-4314-7163 ; 0000-0001-7138-1697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115422/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115422/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37075114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shay, Timothy F</creatorcontrib><creatorcontrib>Sullivan, Erin E</creatorcontrib><creatorcontrib>Ding, Xiaozhe</creatorcontrib><creatorcontrib>Chen, Xinhong</creatorcontrib><creatorcontrib>Ravindra Kumar, Sripriya</creatorcontrib><creatorcontrib>Goertsen, David</creatorcontrib><creatorcontrib>Brown, David</creatorcontrib><creatorcontrib>Crosby, Anaya</creatorcontrib><creatorcontrib>Vielmetter, Jost</creatorcontrib><creatorcontrib>Borsos, Máté</creatorcontrib><creatorcontrib>Wolfe, Damien A</creatorcontrib><creatorcontrib>Lam, Annie W</creatorcontrib><creatorcontrib>Gradinaru, Viviana</creatorcontrib><title>Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in -deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.</description><subject>Animals</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - metabolism</subject><subject>Carbonic Anhydrase IV - genetics</subject><subject>Carbonic Anhydrase IV - metabolism</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - metabolism</subject><subject>Gene Transfer Techniques</subject><subject>Humans</subject><subject>Mice</subject><subject>Neuroscience</subject><subject>Primates - genetics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUuPFCEUhYnROJNxti4NSzfVAgUUrIzp-JikE12oiSvC41YPphpGqK6k1_PHpe2eybgCwnfOvTkHodeUrChl8l310YZlZcNWSqqeoUvWD6JjgqvnT-4X6LrW34QQyqUUVL9EF_1ABkEpv0T330rc2Rk6n1OFskDA3haXU_TYpttDKLYCvvnZHgHv9iUm6ArUuUQ_N3bzS64phmTdBNhNOYfOFRsTdraUCAX7kmuNaYvdoWHbJofSdEssdsIL-DmX-gq9GO1U4fp8XqEfnz5-X3_pNl8_36w_bDrfazp3QYxSBSXU2PdCDAS4HzThWnOgzmplNZM8jGQkxA1eu4FJAo6RwL1UEFh_hd6ffO_2bgfBQ5rbFubumEA5mGyj-f8nxVuzzYuhhFLB2dHh7dmh5D_7FoPZxephmmyCvK-GKdJrKRWnDV2d0H8JFBgf51Biju2ZU3vm3F4TvHm63SP-0FX_F4FYmqk</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Shay, Timothy F</creator><creator>Sullivan, Erin E</creator><creator>Ding, Xiaozhe</creator><creator>Chen, Xinhong</creator><creator>Ravindra Kumar, Sripriya</creator><creator>Goertsen, David</creator><creator>Brown, David</creator><creator>Crosby, Anaya</creator><creator>Vielmetter, Jost</creator><creator>Borsos, Máté</creator><creator>Wolfe, Damien A</creator><creator>Lam, Annie W</creator><creator>Gradinaru, Viviana</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0008-6982-1452</orcidid><orcidid>https://orcid.org/0000-0001-6033-7631</orcidid><orcidid>https://orcid.org/0000-0001-6591-3271</orcidid><orcidid>https://orcid.org/0000-0002-1724-6520</orcidid><orcidid>https://orcid.org/0000-0003-0408-0813</orcidid><orcidid>https://orcid.org/0000-0002-2801-8910</orcidid><orcidid>https://orcid.org/0000-0002-0267-0791</orcidid><orcidid>https://orcid.org/0000-0003-3005-6788</orcidid><orcidid>https://orcid.org/0000-0002-9757-1744</orcidid><orcidid>https://orcid.org/0000-0001-5868-348X</orcidid><orcidid>https://orcid.org/0000-0002-4314-7163</orcidid><orcidid>https://orcid.org/0000-0001-7138-1697</orcidid></search><sort><creationdate>20230421</creationdate><title>Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors</title><author>Shay, Timothy F ; Sullivan, Erin E ; Ding, Xiaozhe ; Chen, Xinhong ; Ravindra Kumar, Sripriya ; Goertsen, David ; Brown, David ; Crosby, Anaya ; Vielmetter, Jost ; Borsos, Máté ; Wolfe, Damien A ; Lam, Annie W ; Gradinaru, Viviana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-d5f68d858f335570e4c7904994e1ba98a9264df0f00b7c9b7260eb20d4c68ed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - metabolism</topic><topic>Carbonic Anhydrase IV - genetics</topic><topic>Carbonic Anhydrase IV - metabolism</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - metabolism</topic><topic>Gene Transfer Techniques</topic><topic>Humans</topic><topic>Mice</topic><topic>Neuroscience</topic><topic>Primates - genetics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shay, Timothy F</creatorcontrib><creatorcontrib>Sullivan, Erin E</creatorcontrib><creatorcontrib>Ding, Xiaozhe</creatorcontrib><creatorcontrib>Chen, Xinhong</creatorcontrib><creatorcontrib>Ravindra Kumar, Sripriya</creatorcontrib><creatorcontrib>Goertsen, David</creatorcontrib><creatorcontrib>Brown, David</creatorcontrib><creatorcontrib>Crosby, Anaya</creatorcontrib><creatorcontrib>Vielmetter, Jost</creatorcontrib><creatorcontrib>Borsos, Máté</creatorcontrib><creatorcontrib>Wolfe, Damien A</creatorcontrib><creatorcontrib>Lam, Annie W</creatorcontrib><creatorcontrib>Gradinaru, Viviana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shay, Timothy F</au><au>Sullivan, Erin E</au><au>Ding, Xiaozhe</au><au>Chen, Xinhong</au><au>Ravindra Kumar, Sripriya</au><au>Goertsen, David</au><au>Brown, David</au><au>Crosby, Anaya</au><au>Vielmetter, Jost</au><au>Borsos, Máté</au><au>Wolfe, Damien A</au><au>Lam, Annie W</au><au>Gradinaru, Viviana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>9</volume><issue>16</issue><spage>eadg6618</spage><epage>eadg6618</epage><pages>eadg6618-eadg6618</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in -deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37075114</pmid><doi>10.1126/sciadv.adg6618</doi><orcidid>https://orcid.org/0009-0008-6982-1452</orcidid><orcidid>https://orcid.org/0000-0001-6033-7631</orcidid><orcidid>https://orcid.org/0000-0001-6591-3271</orcidid><orcidid>https://orcid.org/0000-0002-1724-6520</orcidid><orcidid>https://orcid.org/0000-0003-0408-0813</orcidid><orcidid>https://orcid.org/0000-0002-2801-8910</orcidid><orcidid>https://orcid.org/0000-0002-0267-0791</orcidid><orcidid>https://orcid.org/0000-0003-3005-6788</orcidid><orcidid>https://orcid.org/0000-0002-9757-1744</orcidid><orcidid>https://orcid.org/0000-0001-5868-348X</orcidid><orcidid>https://orcid.org/0000-0002-4314-7163</orcidid><orcidid>https://orcid.org/0000-0001-7138-1697</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2023-04, Vol.9 (16), p.eadg6618-eadg6618
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10115422
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Blood-Brain Barrier - metabolism
Brain - metabolism
Carbonic Anhydrase IV - genetics
Carbonic Anhydrase IV - metabolism
Dependovirus - genetics
Dependovirus - metabolism
Gene Transfer Techniques
Humans
Mice
Neuroscience
Primates - genetics
SciAdv r-articles
title Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primate-conserved%20carbonic%20anhydrase%20IV%20and%20murine-restricted%20LY6C1%20enable%20blood-brain%20barrier%20crossing%20by%20engineered%20viral%20vectors&rft.jtitle=Science%20advances&rft.au=Shay,%20Timothy%20F&rft.date=2023-04-21&rft.volume=9&rft.issue=16&rft.spage=eadg6618&rft.epage=eadg6618&rft.pages=eadg6618-eadg6618&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adg6618&rft_dat=%3Cproquest_pubme%3E2803966841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803966841&rft_id=info:pmid/37075114&rfr_iscdi=true