Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors
The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previ...
Gespeichert in:
Veröffentlicht in: | Science advances 2023-04, Vol.9 (16), p.eadg6618-eadg6618 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eadg6618 |
---|---|
container_issue | 16 |
container_start_page | eadg6618 |
container_title | Science advances |
container_volume | 9 |
creator | Shay, Timothy F Sullivan, Erin E Ding, Xiaozhe Chen, Xinhong Ravindra Kumar, Sripriya Goertsen, David Brown, David Crosby, Anaya Vielmetter, Jost Borsos, Máté Wolfe, Damien A Lam, Annie W Gradinaru, Viviana |
description | The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in
-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors. |
doi_str_mv | 10.1126/sciadv.adg6618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10115422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803966841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-d5f68d858f335570e4c7904994e1ba98a9264df0f00b7c9b7260eb20d4c68ed23</originalsourceid><addsrcrecordid>eNpVkUuPFCEUhYnROJNxti4NSzfVAgUUrIzp-JikE12oiSvC41YPphpGqK6k1_PHpe2eybgCwnfOvTkHodeUrChl8l310YZlZcNWSqqeoUvWD6JjgqvnT-4X6LrW34QQyqUUVL9EF_1ABkEpv0T330rc2Rk6n1OFskDA3haXU_TYpttDKLYCvvnZHgHv9iUm6ArUuUQ_N3bzS64phmTdBNhNOYfOFRsTdraUCAX7kmuNaYvdoWHbJofSdEssdsIL-DmX-gq9GO1U4fp8XqEfnz5-X3_pNl8_36w_bDrfazp3QYxSBSXU2PdCDAS4HzThWnOgzmplNZM8jGQkxA1eu4FJAo6RwL1UEFh_hd6ffO_2bgfBQ5rbFubumEA5mGyj-f8nxVuzzYuhhFLB2dHh7dmh5D_7FoPZxephmmyCvK-GKdJrKRWnDV2d0H8JFBgf51Biju2ZU3vm3F4TvHm63SP-0FX_F4FYmqk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803966841</pqid></control><display><type>article</type><title>Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shay, Timothy F ; Sullivan, Erin E ; Ding, Xiaozhe ; Chen, Xinhong ; Ravindra Kumar, Sripriya ; Goertsen, David ; Brown, David ; Crosby, Anaya ; Vielmetter, Jost ; Borsos, Máté ; Wolfe, Damien A ; Lam, Annie W ; Gradinaru, Viviana</creator><creatorcontrib>Shay, Timothy F ; Sullivan, Erin E ; Ding, Xiaozhe ; Chen, Xinhong ; Ravindra Kumar, Sripriya ; Goertsen, David ; Brown, David ; Crosby, Anaya ; Vielmetter, Jost ; Borsos, Máté ; Wolfe, Damien A ; Lam, Annie W ; Gradinaru, Viviana</creatorcontrib><description>The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in
-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adg6618</identifier><identifier>PMID: 37075114</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Blood-Brain Barrier - metabolism ; Brain - metabolism ; Carbonic Anhydrase IV - genetics ; Carbonic Anhydrase IV - metabolism ; Dependovirus - genetics ; Dependovirus - metabolism ; Gene Transfer Techniques ; Humans ; Mice ; Neuroscience ; Primates - genetics ; SciAdv r-articles</subject><ispartof>Science advances, 2023-04, Vol.9 (16), p.eadg6618-eadg6618</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-d5f68d858f335570e4c7904994e1ba98a9264df0f00b7c9b7260eb20d4c68ed23</citedby><cites>FETCH-LOGICAL-c391t-d5f68d858f335570e4c7904994e1ba98a9264df0f00b7c9b7260eb20d4c68ed23</cites><orcidid>0009-0008-6982-1452 ; 0000-0001-6033-7631 ; 0000-0001-6591-3271 ; 0000-0002-1724-6520 ; 0000-0003-0408-0813 ; 0000-0002-2801-8910 ; 0000-0002-0267-0791 ; 0000-0003-3005-6788 ; 0000-0002-9757-1744 ; 0000-0001-5868-348X ; 0000-0002-4314-7163 ; 0000-0001-7138-1697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115422/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115422/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37075114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shay, Timothy F</creatorcontrib><creatorcontrib>Sullivan, Erin E</creatorcontrib><creatorcontrib>Ding, Xiaozhe</creatorcontrib><creatorcontrib>Chen, Xinhong</creatorcontrib><creatorcontrib>Ravindra Kumar, Sripriya</creatorcontrib><creatorcontrib>Goertsen, David</creatorcontrib><creatorcontrib>Brown, David</creatorcontrib><creatorcontrib>Crosby, Anaya</creatorcontrib><creatorcontrib>Vielmetter, Jost</creatorcontrib><creatorcontrib>Borsos, Máté</creatorcontrib><creatorcontrib>Wolfe, Damien A</creatorcontrib><creatorcontrib>Lam, Annie W</creatorcontrib><creatorcontrib>Gradinaru, Viviana</creatorcontrib><title>Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in
-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.</description><subject>Animals</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - metabolism</subject><subject>Carbonic Anhydrase IV - genetics</subject><subject>Carbonic Anhydrase IV - metabolism</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - metabolism</subject><subject>Gene Transfer Techniques</subject><subject>Humans</subject><subject>Mice</subject><subject>Neuroscience</subject><subject>Primates - genetics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUuPFCEUhYnROJNxti4NSzfVAgUUrIzp-JikE12oiSvC41YPphpGqK6k1_PHpe2eybgCwnfOvTkHodeUrChl8l310YZlZcNWSqqeoUvWD6JjgqvnT-4X6LrW34QQyqUUVL9EF_1ABkEpv0T330rc2Rk6n1OFskDA3haXU_TYpttDKLYCvvnZHgHv9iUm6ArUuUQ_N3bzS64phmTdBNhNOYfOFRsTdraUCAX7kmuNaYvdoWHbJofSdEssdsIL-DmX-gq9GO1U4fp8XqEfnz5-X3_pNl8_36w_bDrfazp3QYxSBSXU2PdCDAS4HzThWnOgzmplNZM8jGQkxA1eu4FJAo6RwL1UEFh_hd6ffO_2bgfBQ5rbFubumEA5mGyj-f8nxVuzzYuhhFLB2dHh7dmh5D_7FoPZxephmmyCvK-GKdJrKRWnDV2d0H8JFBgf51Biju2ZU3vm3F4TvHm63SP-0FX_F4FYmqk</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Shay, Timothy F</creator><creator>Sullivan, Erin E</creator><creator>Ding, Xiaozhe</creator><creator>Chen, Xinhong</creator><creator>Ravindra Kumar, Sripriya</creator><creator>Goertsen, David</creator><creator>Brown, David</creator><creator>Crosby, Anaya</creator><creator>Vielmetter, Jost</creator><creator>Borsos, Máté</creator><creator>Wolfe, Damien A</creator><creator>Lam, Annie W</creator><creator>Gradinaru, Viviana</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0008-6982-1452</orcidid><orcidid>https://orcid.org/0000-0001-6033-7631</orcidid><orcidid>https://orcid.org/0000-0001-6591-3271</orcidid><orcidid>https://orcid.org/0000-0002-1724-6520</orcidid><orcidid>https://orcid.org/0000-0003-0408-0813</orcidid><orcidid>https://orcid.org/0000-0002-2801-8910</orcidid><orcidid>https://orcid.org/0000-0002-0267-0791</orcidid><orcidid>https://orcid.org/0000-0003-3005-6788</orcidid><orcidid>https://orcid.org/0000-0002-9757-1744</orcidid><orcidid>https://orcid.org/0000-0001-5868-348X</orcidid><orcidid>https://orcid.org/0000-0002-4314-7163</orcidid><orcidid>https://orcid.org/0000-0001-7138-1697</orcidid></search><sort><creationdate>20230421</creationdate><title>Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors</title><author>Shay, Timothy F ; Sullivan, Erin E ; Ding, Xiaozhe ; Chen, Xinhong ; Ravindra Kumar, Sripriya ; Goertsen, David ; Brown, David ; Crosby, Anaya ; Vielmetter, Jost ; Borsos, Máté ; Wolfe, Damien A ; Lam, Annie W ; Gradinaru, Viviana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-d5f68d858f335570e4c7904994e1ba98a9264df0f00b7c9b7260eb20d4c68ed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - metabolism</topic><topic>Carbonic Anhydrase IV - genetics</topic><topic>Carbonic Anhydrase IV - metabolism</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - metabolism</topic><topic>Gene Transfer Techniques</topic><topic>Humans</topic><topic>Mice</topic><topic>Neuroscience</topic><topic>Primates - genetics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shay, Timothy F</creatorcontrib><creatorcontrib>Sullivan, Erin E</creatorcontrib><creatorcontrib>Ding, Xiaozhe</creatorcontrib><creatorcontrib>Chen, Xinhong</creatorcontrib><creatorcontrib>Ravindra Kumar, Sripriya</creatorcontrib><creatorcontrib>Goertsen, David</creatorcontrib><creatorcontrib>Brown, David</creatorcontrib><creatorcontrib>Crosby, Anaya</creatorcontrib><creatorcontrib>Vielmetter, Jost</creatorcontrib><creatorcontrib>Borsos, Máté</creatorcontrib><creatorcontrib>Wolfe, Damien A</creatorcontrib><creatorcontrib>Lam, Annie W</creatorcontrib><creatorcontrib>Gradinaru, Viviana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shay, Timothy F</au><au>Sullivan, Erin E</au><au>Ding, Xiaozhe</au><au>Chen, Xinhong</au><au>Ravindra Kumar, Sripriya</au><au>Goertsen, David</au><au>Brown, David</au><au>Crosby, Anaya</au><au>Vielmetter, Jost</au><au>Borsos, Máté</au><au>Wolfe, Damien A</au><au>Lam, Annie W</au><au>Gradinaru, Viviana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>9</volume><issue>16</issue><spage>eadg6618</spage><epage>eadg6618</epage><pages>eadg6618-eadg6618</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in
-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37075114</pmid><doi>10.1126/sciadv.adg6618</doi><orcidid>https://orcid.org/0009-0008-6982-1452</orcidid><orcidid>https://orcid.org/0000-0001-6033-7631</orcidid><orcidid>https://orcid.org/0000-0001-6591-3271</orcidid><orcidid>https://orcid.org/0000-0002-1724-6520</orcidid><orcidid>https://orcid.org/0000-0003-0408-0813</orcidid><orcidid>https://orcid.org/0000-0002-2801-8910</orcidid><orcidid>https://orcid.org/0000-0002-0267-0791</orcidid><orcidid>https://orcid.org/0000-0003-3005-6788</orcidid><orcidid>https://orcid.org/0000-0002-9757-1744</orcidid><orcidid>https://orcid.org/0000-0001-5868-348X</orcidid><orcidid>https://orcid.org/0000-0002-4314-7163</orcidid><orcidid>https://orcid.org/0000-0001-7138-1697</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2023-04, Vol.9 (16), p.eadg6618-eadg6618 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10115422 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Blood-Brain Barrier - metabolism Brain - metabolism Carbonic Anhydrase IV - genetics Carbonic Anhydrase IV - metabolism Dependovirus - genetics Dependovirus - metabolism Gene Transfer Techniques Humans Mice Neuroscience Primates - genetics SciAdv r-articles |
title | Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primate-conserved%20carbonic%20anhydrase%20IV%20and%20murine-restricted%20LY6C1%20enable%20blood-brain%20barrier%20crossing%20by%20engineered%20viral%20vectors&rft.jtitle=Science%20advances&rft.au=Shay,%20Timothy%20F&rft.date=2023-04-21&rft.volume=9&rft.issue=16&rft.spage=eadg6618&rft.epage=eadg6618&rft.pages=eadg6618-eadg6618&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adg6618&rft_dat=%3Cproquest_pubme%3E2803966841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803966841&rft_id=info:pmid/37075114&rfr_iscdi=true |