MINSTED nanoscopy enters the Ångström localization range

Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2023-04, Vol.41 (4), p.569-576
Hauptverfasser: Weber, Michael, von der Emde, Henrik, Leutenegger, Marcel, Gunkel, Philip, Sambandan, Sivakumar, Khan, Taukeer A., Keller-Findeisen, Jan, Cordes, Volker C., Hell, Stefan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 4
container_start_page 569
container_title Nature biotechnology
container_volume 41
creator Weber, Michael
von der Emde, Henrik
Leutenegger, Marcel
Gunkel, Philip
Sambandan, Sivakumar
Khan, Taukeer A.
Keller-Findeisen, Jan
Cordes, Volker C.
Hell, Stefan W.
description Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power. By blue-shifting the STED beam and separating fluorophores by on/off switching, individual fluorophores bound to a DNA strand are localized with σ  = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Because our experiments yield a localization precision σ  = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up new areas of application in the study of macromolecular complexes in cells. Sub-nanometer localization precision is achieved with all-optical microscopy.
doi_str_mv 10.1038/s41587-022-01519-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10110459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802199378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-671fd8dc8fe7a76e5637d8684497762f07f8bd3ec5d5379cc84fa7fc5a03ef6a3</originalsourceid><addsrcrecordid>eNp9kblOAzEQhi0EIuF4AQq0Eg3Ngr0-lwahcEXiKIDaMl472WhjB3uDFHpeiRfgxXAId0Hlkf5vfs_MD8AWgnsIYrEfCaKC57AocogoKnOyBLqIEpYjVrLlVMO5jCjrgLUYRxBCRhhbBR3MMCGCwC44uOxf3dyeHGdOOR-1n8wy41oTYtYOTfb67AaxDa8v46zxWjX1k2pr77Kg3MBsgBWrmmg2P951cHd6cts7zy-uz_q9o4tcE07bnHFkK1FpYQ1XnBnKMK8EE4SUnLPCQm7FfYWNphXFvNRaEKu41VRBbCxTeB0cLnwn0_uxqXSaL6hGTkI9VmEmvarlb8XVQznwjxJBhCChZXLY_XAI_mFqYivHddSmaZQzfhplwTFBjBFIE7rzBx35aXBpP1kIWKCyxFwkqlhQOvgYg7Ff0yAo59nIRTYyZSPfs5EkNW3_3OOr5TOMBOAFEJOUDhy-__7H9g1WBps5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802199378</pqid></control><display><type>article</type><title>MINSTED nanoscopy enters the Ångström localization range</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Weber, Michael ; von der Emde, Henrik ; Leutenegger, Marcel ; Gunkel, Philip ; Sambandan, Sivakumar ; Khan, Taukeer A. ; Keller-Findeisen, Jan ; Cordes, Volker C. ; Hell, Stefan W.</creator><creatorcontrib>Weber, Michael ; von der Emde, Henrik ; Leutenegger, Marcel ; Gunkel, Philip ; Sambandan, Sivakumar ; Khan, Taukeer A. ; Keller-Findeisen, Jan ; Cordes, Volker C. ; Hell, Stefan W.</creatorcontrib><description>Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power. By blue-shifting the STED beam and separating fluorophores by on/off switching, individual fluorophores bound to a DNA strand are localized with σ  = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Because our experiments yield a localization precision σ  = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up new areas of application in the study of macromolecular complexes in cells. Sub-nanometer localization precision is achieved with all-optical microscopy.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-022-01519-4</identifier><identifier>PMID: 36344840</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/328/2238 ; 639/624/1107/328/2238 ; Agriculture ; Animals ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Chemical compounds ; Deoxyribonucleic acid ; Depletion ; DNA ; Fluorescence ; Fluorescent Dyes ; Fluorophores ; Hybridization ; Life Sciences ; Light microscopy ; Localization ; Macromolecules ; Mammalian cells ; Mammals ; Microscopy, Fluorescence - methods ; Nuclear pores ; Optical microscopy ; Photons ; Room temperature ; Stimulated emission</subject><ispartof>Nature biotechnology, 2023-04, Vol.41 (4), p.569-576</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-671fd8dc8fe7a76e5637d8684497762f07f8bd3ec5d5379cc84fa7fc5a03ef6a3</citedby><cites>FETCH-LOGICAL-c475t-671fd8dc8fe7a76e5637d8684497762f07f8bd3ec5d5379cc84fa7fc5a03ef6a3</cites><orcidid>0000-0003-4287-9482 ; 0000-0002-3188-6612 ; 0000-0002-9638-5077 ; 0000-0001-9680-7543 ; 0000-0003-4731-0148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-022-01519-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-022-01519-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36344840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Michael</creatorcontrib><creatorcontrib>von der Emde, Henrik</creatorcontrib><creatorcontrib>Leutenegger, Marcel</creatorcontrib><creatorcontrib>Gunkel, Philip</creatorcontrib><creatorcontrib>Sambandan, Sivakumar</creatorcontrib><creatorcontrib>Khan, Taukeer A.</creatorcontrib><creatorcontrib>Keller-Findeisen, Jan</creatorcontrib><creatorcontrib>Cordes, Volker C.</creatorcontrib><creatorcontrib>Hell, Stefan W.</creatorcontrib><title>MINSTED nanoscopy enters the Ångström localization range</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power. By blue-shifting the STED beam and separating fluorophores by on/off switching, individual fluorophores bound to a DNA strand are localized with σ  = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Because our experiments yield a localization precision σ  = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up new areas of application in the study of macromolecular complexes in cells. Sub-nanometer localization precision is achieved with all-optical microscopy.</description><subject>631/1647/328/2238</subject><subject>639/624/1107/328/2238</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemical compounds</subject><subject>Deoxyribonucleic acid</subject><subject>Depletion</subject><subject>DNA</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes</subject><subject>Fluorophores</subject><subject>Hybridization</subject><subject>Life Sciences</subject><subject>Light microscopy</subject><subject>Localization</subject><subject>Macromolecules</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Nuclear pores</subject><subject>Optical microscopy</subject><subject>Photons</subject><subject>Room temperature</subject><subject>Stimulated emission</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kblOAzEQhi0EIuF4AQq0Eg3Ngr0-lwahcEXiKIDaMl472WhjB3uDFHpeiRfgxXAId0Hlkf5vfs_MD8AWgnsIYrEfCaKC57AocogoKnOyBLqIEpYjVrLlVMO5jCjrgLUYRxBCRhhbBR3MMCGCwC44uOxf3dyeHGdOOR-1n8wy41oTYtYOTfb67AaxDa8v46zxWjX1k2pr77Kg3MBsgBWrmmg2P951cHd6cts7zy-uz_q9o4tcE07bnHFkK1FpYQ1XnBnKMK8EE4SUnLPCQm7FfYWNphXFvNRaEKu41VRBbCxTeB0cLnwn0_uxqXSaL6hGTkI9VmEmvarlb8XVQznwjxJBhCChZXLY_XAI_mFqYivHddSmaZQzfhplwTFBjBFIE7rzBx35aXBpP1kIWKCyxFwkqlhQOvgYg7Ff0yAo59nIRTYyZSPfs5EkNW3_3OOr5TOMBOAFEJOUDhy-__7H9g1WBps5</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Weber, Michael</creator><creator>von der Emde, Henrik</creator><creator>Leutenegger, Marcel</creator><creator>Gunkel, Philip</creator><creator>Sambandan, Sivakumar</creator><creator>Khan, Taukeer A.</creator><creator>Keller-Findeisen, Jan</creator><creator>Cordes, Volker C.</creator><creator>Hell, Stefan W.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4287-9482</orcidid><orcidid>https://orcid.org/0000-0002-3188-6612</orcidid><orcidid>https://orcid.org/0000-0002-9638-5077</orcidid><orcidid>https://orcid.org/0000-0001-9680-7543</orcidid><orcidid>https://orcid.org/0000-0003-4731-0148</orcidid></search><sort><creationdate>20230401</creationdate><title>MINSTED nanoscopy enters the Ångström localization range</title><author>Weber, Michael ; von der Emde, Henrik ; Leutenegger, Marcel ; Gunkel, Philip ; Sambandan, Sivakumar ; Khan, Taukeer A. ; Keller-Findeisen, Jan ; Cordes, Volker C. ; Hell, Stefan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-671fd8dc8fe7a76e5637d8684497762f07f8bd3ec5d5379cc84fa7fc5a03ef6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/1647/328/2238</topic><topic>639/624/1107/328/2238</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemical compounds</topic><topic>Deoxyribonucleic acid</topic><topic>Depletion</topic><topic>DNA</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes</topic><topic>Fluorophores</topic><topic>Hybridization</topic><topic>Life Sciences</topic><topic>Light microscopy</topic><topic>Localization</topic><topic>Macromolecules</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Nuclear pores</topic><topic>Optical microscopy</topic><topic>Photons</topic><topic>Room temperature</topic><topic>Stimulated emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Michael</creatorcontrib><creatorcontrib>von der Emde, Henrik</creatorcontrib><creatorcontrib>Leutenegger, Marcel</creatorcontrib><creatorcontrib>Gunkel, Philip</creatorcontrib><creatorcontrib>Sambandan, Sivakumar</creatorcontrib><creatorcontrib>Khan, Taukeer A.</creatorcontrib><creatorcontrib>Keller-Findeisen, Jan</creatorcontrib><creatorcontrib>Cordes, Volker C.</creatorcontrib><creatorcontrib>Hell, Stefan W.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Michael</au><au>von der Emde, Henrik</au><au>Leutenegger, Marcel</au><au>Gunkel, Philip</au><au>Sambandan, Sivakumar</au><au>Khan, Taukeer A.</au><au>Keller-Findeisen, Jan</au><au>Cordes, Volker C.</au><au>Hell, Stefan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MINSTED nanoscopy enters the Ångström localization range</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>41</volume><issue>4</issue><spage>569</spage><epage>576</epage><pages>569-576</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power. By blue-shifting the STED beam and separating fluorophores by on/off switching, individual fluorophores bound to a DNA strand are localized with σ  = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Because our experiments yield a localization precision σ  = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up new areas of application in the study of macromolecular complexes in cells. Sub-nanometer localization precision is achieved with all-optical microscopy.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36344840</pmid><doi>10.1038/s41587-022-01519-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4287-9482</orcidid><orcidid>https://orcid.org/0000-0002-3188-6612</orcidid><orcidid>https://orcid.org/0000-0002-9638-5077</orcidid><orcidid>https://orcid.org/0000-0001-9680-7543</orcidid><orcidid>https://orcid.org/0000-0003-4731-0148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2023-04, Vol.41 (4), p.569-576
issn 1087-0156
1546-1696
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10110459
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/1647/328/2238
639/624/1107/328/2238
Agriculture
Animals
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Chemical compounds
Deoxyribonucleic acid
Depletion
DNA
Fluorescence
Fluorescent Dyes
Fluorophores
Hybridization
Life Sciences
Light microscopy
Localization
Macromolecules
Mammalian cells
Mammals
Microscopy, Fluorescence - methods
Nuclear pores
Optical microscopy
Photons
Room temperature
Stimulated emission
title MINSTED nanoscopy enters the Ångström localization range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MINSTED%20nanoscopy%20enters%20the%20%C3%85ngstr%C3%B6m%20localization%20range&rft.jtitle=Nature%20biotechnology&rft.au=Weber,%20Michael&rft.date=2023-04-01&rft.volume=41&rft.issue=4&rft.spage=569&rft.epage=576&rft.pages=569-576&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-022-01519-4&rft_dat=%3Cproquest_pubme%3E2802199378%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802199378&rft_id=info:pmid/36344840&rfr_iscdi=true