Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming
During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investi...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2023-01, Vol.175 (1), p.e13848-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e13848 |
container_title | Physiologia plantarum |
container_volume | 175 |
creator | Pedrero‐López, Luis V. Flores‐Ortiz, César M. Pérez‐García, Blanca Cruz‐Ortega, Rocío Mehltreter, Klaus Sánchez‐Coronado, María E. Hernández‐Portilla, Luis Barbo Contreras‐Jiménez, Gastón Orozco‐Segovia, Alma |
description | During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus. |
doi_str_mv | 10.1111/ppl.13848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778853475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-af93a8e825be17a9cdab7470084e669e4f47a689ce79a3e443b750401328d7be3</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhi3UqmyhB16gstQLPQTs2ImdU1WhtiCtCodythxnwhp57dROinLjEfqMfZJ6WUBQVF9G1nz655_5ETqg5IjmdzwM7ogyyeUOWlDWNAUjFX-FFoQwWjSMil30NqVrQmhd0_IN2mV1XcqKywW6-R78n9vfZuVCDMNqdi5MCWvfYRPnYQwvez1Ej9MQIiTc2T5_sfV4XIGNeB1a62zSow0ehx73ehxnrI3tMjtF66_wEO061330utcuwbv7uocuv375cXJaLM-_nZ18XhaGMS4L3TdMS5Bl1QIVujGdbgUXhEgOdd0A77nQtWwMiEYz4Jy1oiKcUFbKTrTA9tCnre4wtWvoDPgxaqc2LnScVdBWPe94u1JX4ZeihBIhCMsKh_cKMfycII1qbZMB57SHfA9ViprnuWVVZfTDP-h1mKLP-2VKSFkxLjbUxy1lYkgpQv_ohhK1yVPlPNVdnpl9_9T-I_kQYAaOt8CNdTD_X0ldXCy3kn8BLIGvPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778853475</pqid></control><display><type>article</type><title>Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pedrero‐López, Luis V. ; Flores‐Ortiz, César M. ; Pérez‐García, Blanca ; Cruz‐Ortega, Rocío ; Mehltreter, Klaus ; Sánchez‐Coronado, María E. ; Hernández‐Portilla, Luis Barbo ; Contreras‐Jiménez, Gastón ; Orozco‐Segovia, Alma</creator><creatorcontrib>Pedrero‐López, Luis V. ; Flores‐Ortiz, César M. ; Pérez‐García, Blanca ; Cruz‐Ortega, Rocío ; Mehltreter, Klaus ; Sánchez‐Coronado, María E. ; Hernández‐Portilla, Luis Barbo ; Contreras‐Jiménez, Gastón ; Orozco‐Segovia, Alma</creatorcontrib><description>During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13848</identifier><identifier>PMID: 36628548</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biochemistry and Metabolism ; Cell membranes ; Chlorophyll ; Cloud forests ; Dehydration ; Energy metabolism ; Fatty acids ; Fatty Acids - metabolism ; Ferns ; Ferns - metabolism ; Gas chromatography ; Germination ; Hydration ; Imbibition ; Lipid Metabolism ; Lipids ; Liquid chromatography ; Metabolism ; Oleic acid ; Oleic Acid - metabolism ; Original Research ; Palmitic Acid - metabolism ; Photosynthesis ; Photosynthetic apparatus ; Priming ; Spore germination ; Spores ; Spores - physiology ; Stearic Acids - metabolism</subject><ispartof>Physiologia plantarum, 2023-01, Vol.175 (1), p.e13848-n/a</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2023 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3348-af93a8e825be17a9cdab7470084e669e4f47a689ce79a3e443b750401328d7be3</cites><orcidid>0000-0002-9069-1882 ; 0000-0001-9448-6379 ; 0000-0003-1720-1063 ; 0000-0003-0620-6475 ; 0000-0001-8661-5652 ; 0000-0003-0143-6343 ; 0000-0002-5837-799X ; 0000-0002-1725-5822 ; 0000-0001-6033-6532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13848$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13848$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36628548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedrero‐López, Luis V.</creatorcontrib><creatorcontrib>Flores‐Ortiz, César M.</creatorcontrib><creatorcontrib>Pérez‐García, Blanca</creatorcontrib><creatorcontrib>Cruz‐Ortega, Rocío</creatorcontrib><creatorcontrib>Mehltreter, Klaus</creatorcontrib><creatorcontrib>Sánchez‐Coronado, María E.</creatorcontrib><creatorcontrib>Hernández‐Portilla, Luis Barbo</creatorcontrib><creatorcontrib>Contreras‐Jiménez, Gastón</creatorcontrib><creatorcontrib>Orozco‐Segovia, Alma</creatorcontrib><title>Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.</description><subject>Biochemistry and Metabolism</subject><subject>Cell membranes</subject><subject>Chlorophyll</subject><subject>Cloud forests</subject><subject>Dehydration</subject><subject>Energy metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Ferns</subject><subject>Ferns - metabolism</subject><subject>Gas chromatography</subject><subject>Germination</subject><subject>Hydration</subject><subject>Imbibition</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Liquid chromatography</subject><subject>Metabolism</subject><subject>Oleic acid</subject><subject>Oleic Acid - metabolism</subject><subject>Original Research</subject><subject>Palmitic Acid - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthetic apparatus</subject><subject>Priming</subject><subject>Spore germination</subject><subject>Spores</subject><subject>Spores - physiology</subject><subject>Stearic Acids - metabolism</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFO3DAQhi3UqmyhB16gstQLPQTs2ImdU1WhtiCtCodythxnwhp57dROinLjEfqMfZJ6WUBQVF9G1nz655_5ETqg5IjmdzwM7ogyyeUOWlDWNAUjFX-FFoQwWjSMil30NqVrQmhd0_IN2mV1XcqKywW6-R78n9vfZuVCDMNqdi5MCWvfYRPnYQwvez1Ej9MQIiTc2T5_sfV4XIGNeB1a62zSow0ehx73ehxnrI3tMjtF66_wEO061330utcuwbv7uocuv375cXJaLM-_nZ18XhaGMS4L3TdMS5Bl1QIVujGdbgUXhEgOdd0A77nQtWwMiEYz4Jy1oiKcUFbKTrTA9tCnre4wtWvoDPgxaqc2LnScVdBWPe94u1JX4ZeihBIhCMsKh_cKMfycII1qbZMB57SHfA9ViprnuWVVZfTDP-h1mKLP-2VKSFkxLjbUxy1lYkgpQv_ohhK1yVPlPNVdnpl9_9T-I_kQYAaOt8CNdTD_X0ldXCy3kn8BLIGvPA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Pedrero‐López, Luis V.</creator><creator>Flores‐Ortiz, César M.</creator><creator>Pérez‐García, Blanca</creator><creator>Cruz‐Ortega, Rocío</creator><creator>Mehltreter, Klaus</creator><creator>Sánchez‐Coronado, María E.</creator><creator>Hernández‐Portilla, Luis Barbo</creator><creator>Contreras‐Jiménez, Gastón</creator><creator>Orozco‐Segovia, Alma</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9069-1882</orcidid><orcidid>https://orcid.org/0000-0001-9448-6379</orcidid><orcidid>https://orcid.org/0000-0003-1720-1063</orcidid><orcidid>https://orcid.org/0000-0003-0620-6475</orcidid><orcidid>https://orcid.org/0000-0001-8661-5652</orcidid><orcidid>https://orcid.org/0000-0003-0143-6343</orcidid><orcidid>https://orcid.org/0000-0002-5837-799X</orcidid><orcidid>https://orcid.org/0000-0002-1725-5822</orcidid><orcidid>https://orcid.org/0000-0001-6033-6532</orcidid></search><sort><creationdate>202301</creationdate><title>Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming</title><author>Pedrero‐López, Luis V. ; Flores‐Ortiz, César M. ; Pérez‐García, Blanca ; Cruz‐Ortega, Rocío ; Mehltreter, Klaus ; Sánchez‐Coronado, María E. ; Hernández‐Portilla, Luis Barbo ; Contreras‐Jiménez, Gastón ; Orozco‐Segovia, Alma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-af93a8e825be17a9cdab7470084e669e4f47a689ce79a3e443b750401328d7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biochemistry and Metabolism</topic><topic>Cell membranes</topic><topic>Chlorophyll</topic><topic>Cloud forests</topic><topic>Dehydration</topic><topic>Energy metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Ferns</topic><topic>Ferns - metabolism</topic><topic>Gas chromatography</topic><topic>Germination</topic><topic>Hydration</topic><topic>Imbibition</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Liquid chromatography</topic><topic>Metabolism</topic><topic>Oleic acid</topic><topic>Oleic Acid - metabolism</topic><topic>Original Research</topic><topic>Palmitic Acid - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthetic apparatus</topic><topic>Priming</topic><topic>Spore germination</topic><topic>Spores</topic><topic>Spores - physiology</topic><topic>Stearic Acids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedrero‐López, Luis V.</creatorcontrib><creatorcontrib>Flores‐Ortiz, César M.</creatorcontrib><creatorcontrib>Pérez‐García, Blanca</creatorcontrib><creatorcontrib>Cruz‐Ortega, Rocío</creatorcontrib><creatorcontrib>Mehltreter, Klaus</creatorcontrib><creatorcontrib>Sánchez‐Coronado, María E.</creatorcontrib><creatorcontrib>Hernández‐Portilla, Luis Barbo</creatorcontrib><creatorcontrib>Contreras‐Jiménez, Gastón</creatorcontrib><creatorcontrib>Orozco‐Segovia, Alma</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedrero‐López, Luis V.</au><au>Flores‐Ortiz, César M.</au><au>Pérez‐García, Blanca</au><au>Cruz‐Ortega, Rocío</au><au>Mehltreter, Klaus</au><au>Sánchez‐Coronado, María E.</au><au>Hernández‐Portilla, Luis Barbo</au><au>Contreras‐Jiménez, Gastón</au><au>Orozco‐Segovia, Alma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2023-01</date><risdate>2023</risdate><volume>175</volume><issue>1</issue><spage>e13848</spage><epage>n/a</epage><pages>e13848-n/a</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>36628548</pmid><doi>10.1111/ppl.13848</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9069-1882</orcidid><orcidid>https://orcid.org/0000-0001-9448-6379</orcidid><orcidid>https://orcid.org/0000-0003-1720-1063</orcidid><orcidid>https://orcid.org/0000-0003-0620-6475</orcidid><orcidid>https://orcid.org/0000-0001-8661-5652</orcidid><orcidid>https://orcid.org/0000-0003-0143-6343</orcidid><orcidid>https://orcid.org/0000-0002-5837-799X</orcidid><orcidid>https://orcid.org/0000-0002-1725-5822</orcidid><orcidid>https://orcid.org/0000-0001-6033-6532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2023-01, Vol.175 (1), p.e13848-n/a |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107703 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biochemistry and Metabolism Cell membranes Chlorophyll Cloud forests Dehydration Energy metabolism Fatty acids Fatty Acids - metabolism Ferns Ferns - metabolism Gas chromatography Germination Hydration Imbibition Lipid Metabolism Lipids Liquid chromatography Metabolism Oleic acid Oleic Acid - metabolism Original Research Palmitic Acid - metabolism Photosynthesis Photosynthetic apparatus Priming Spore germination Spores Spores - physiology Stearic Acids - metabolism |
title | Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90chlorophyllous%20and%20crypto%E2%80%90chlorophyllous%20fern%20spores%20differ%20in%20their%20mobilisation%20of%20fatty%20acids%20during%20priming&rft.jtitle=Physiologia%20plantarum&rft.au=Pedrero%E2%80%90L%C3%B3pez,%20Luis%20V.&rft.date=2023-01&rft.volume=175&rft.issue=1&rft.spage=e13848&rft.epage=n/a&rft.pages=e13848-n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13848&rft_dat=%3Cproquest_pubme%3E2778853475%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778853475&rft_id=info:pmid/36628548&rfr_iscdi=true |