Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming

During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2023-01, Vol.175 (1), p.e13848-n/a
Hauptverfasser: Pedrero‐López, Luis V., Flores‐Ortiz, César M., Pérez‐García, Blanca, Cruz‐Ortega, Rocío, Mehltreter, Klaus, Sánchez‐Coronado, María E., Hernández‐Portilla, Luis Barbo, Contreras‐Jiménez, Gastón, Orozco‐Segovia, Alma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e13848
container_title Physiologia plantarum
container_volume 175
creator Pedrero‐López, Luis V.
Flores‐Ortiz, César M.
Pérez‐García, Blanca
Cruz‐Ortega, Rocío
Mehltreter, Klaus
Sánchez‐Coronado, María E.
Hernández‐Portilla, Luis Barbo
Contreras‐Jiménez, Gastón
Orozco‐Segovia, Alma
description During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.
doi_str_mv 10.1111/ppl.13848
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778853475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-af93a8e825be17a9cdab7470084e669e4f47a689ce79a3e443b750401328d7be3</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhi3UqmyhB16gstQLPQTs2ImdU1WhtiCtCodythxnwhp57dROinLjEfqMfZJ6WUBQVF9G1nz655_5ETqg5IjmdzwM7ogyyeUOWlDWNAUjFX-FFoQwWjSMil30NqVrQmhd0_IN2mV1XcqKywW6-R78n9vfZuVCDMNqdi5MCWvfYRPnYQwvez1Ej9MQIiTc2T5_sfV4XIGNeB1a62zSow0ehx73ehxnrI3tMjtF66_wEO061330utcuwbv7uocuv375cXJaLM-_nZ18XhaGMS4L3TdMS5Bl1QIVujGdbgUXhEgOdd0A77nQtWwMiEYz4Jy1oiKcUFbKTrTA9tCnre4wtWvoDPgxaqc2LnScVdBWPe94u1JX4ZeihBIhCMsKh_cKMfycII1qbZMB57SHfA9ViprnuWVVZfTDP-h1mKLP-2VKSFkxLjbUxy1lYkgpQv_ohhK1yVPlPNVdnpl9_9T-I_kQYAaOt8CNdTD_X0ldXCy3kn8BLIGvPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778853475</pqid></control><display><type>article</type><title>Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pedrero‐López, Luis V. ; Flores‐Ortiz, César M. ; Pérez‐García, Blanca ; Cruz‐Ortega, Rocío ; Mehltreter, Klaus ; Sánchez‐Coronado, María E. ; Hernández‐Portilla, Luis Barbo ; Contreras‐Jiménez, Gastón ; Orozco‐Segovia, Alma</creator><creatorcontrib>Pedrero‐López, Luis V. ; Flores‐Ortiz, César M. ; Pérez‐García, Blanca ; Cruz‐Ortega, Rocío ; Mehltreter, Klaus ; Sánchez‐Coronado, María E. ; Hernández‐Portilla, Luis Barbo ; Contreras‐Jiménez, Gastón ; Orozco‐Segovia, Alma</creatorcontrib><description>During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13848</identifier><identifier>PMID: 36628548</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biochemistry and Metabolism ; Cell membranes ; Chlorophyll ; Cloud forests ; Dehydration ; Energy metabolism ; Fatty acids ; Fatty Acids - metabolism ; Ferns ; Ferns - metabolism ; Gas chromatography ; Germination ; Hydration ; Imbibition ; Lipid Metabolism ; Lipids ; Liquid chromatography ; Metabolism ; Oleic acid ; Oleic Acid - metabolism ; Original Research ; Palmitic Acid - metabolism ; Photosynthesis ; Photosynthetic apparatus ; Priming ; Spore germination ; Spores ; Spores - physiology ; Stearic Acids - metabolism</subject><ispartof>Physiologia plantarum, 2023-01, Vol.175 (1), p.e13848-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2023 The Authors. Physiologia Plantarum published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3348-af93a8e825be17a9cdab7470084e669e4f47a689ce79a3e443b750401328d7be3</cites><orcidid>0000-0002-9069-1882 ; 0000-0001-9448-6379 ; 0000-0003-1720-1063 ; 0000-0003-0620-6475 ; 0000-0001-8661-5652 ; 0000-0003-0143-6343 ; 0000-0002-5837-799X ; 0000-0002-1725-5822 ; 0000-0001-6033-6532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13848$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13848$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36628548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedrero‐López, Luis V.</creatorcontrib><creatorcontrib>Flores‐Ortiz, César M.</creatorcontrib><creatorcontrib>Pérez‐García, Blanca</creatorcontrib><creatorcontrib>Cruz‐Ortega, Rocío</creatorcontrib><creatorcontrib>Mehltreter, Klaus</creatorcontrib><creatorcontrib>Sánchez‐Coronado, María E.</creatorcontrib><creatorcontrib>Hernández‐Portilla, Luis Barbo</creatorcontrib><creatorcontrib>Contreras‐Jiménez, Gastón</creatorcontrib><creatorcontrib>Orozco‐Segovia, Alma</creatorcontrib><title>Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.</description><subject>Biochemistry and Metabolism</subject><subject>Cell membranes</subject><subject>Chlorophyll</subject><subject>Cloud forests</subject><subject>Dehydration</subject><subject>Energy metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Ferns</subject><subject>Ferns - metabolism</subject><subject>Gas chromatography</subject><subject>Germination</subject><subject>Hydration</subject><subject>Imbibition</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Liquid chromatography</subject><subject>Metabolism</subject><subject>Oleic acid</subject><subject>Oleic Acid - metabolism</subject><subject>Original Research</subject><subject>Palmitic Acid - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthetic apparatus</subject><subject>Priming</subject><subject>Spore germination</subject><subject>Spores</subject><subject>Spores - physiology</subject><subject>Stearic Acids - metabolism</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFO3DAQhi3UqmyhB16gstQLPQTs2ImdU1WhtiCtCodythxnwhp57dROinLjEfqMfZJ6WUBQVF9G1nz655_5ETqg5IjmdzwM7ogyyeUOWlDWNAUjFX-FFoQwWjSMil30NqVrQmhd0_IN2mV1XcqKywW6-R78n9vfZuVCDMNqdi5MCWvfYRPnYQwvez1Ej9MQIiTc2T5_sfV4XIGNeB1a62zSow0ehx73ehxnrI3tMjtF66_wEO061330utcuwbv7uocuv375cXJaLM-_nZ18XhaGMS4L3TdMS5Bl1QIVujGdbgUXhEgOdd0A77nQtWwMiEYz4Jy1oiKcUFbKTrTA9tCnre4wtWvoDPgxaqc2LnScVdBWPe94u1JX4ZeihBIhCMsKh_cKMfycII1qbZMB57SHfA9ViprnuWVVZfTDP-h1mKLP-2VKSFkxLjbUxy1lYkgpQv_ohhK1yVPlPNVdnpl9_9T-I_kQYAaOt8CNdTD_X0ldXCy3kn8BLIGvPA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Pedrero‐López, Luis V.</creator><creator>Flores‐Ortiz, César M.</creator><creator>Pérez‐García, Blanca</creator><creator>Cruz‐Ortega, Rocío</creator><creator>Mehltreter, Klaus</creator><creator>Sánchez‐Coronado, María E.</creator><creator>Hernández‐Portilla, Luis Barbo</creator><creator>Contreras‐Jiménez, Gastón</creator><creator>Orozco‐Segovia, Alma</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9069-1882</orcidid><orcidid>https://orcid.org/0000-0001-9448-6379</orcidid><orcidid>https://orcid.org/0000-0003-1720-1063</orcidid><orcidid>https://orcid.org/0000-0003-0620-6475</orcidid><orcidid>https://orcid.org/0000-0001-8661-5652</orcidid><orcidid>https://orcid.org/0000-0003-0143-6343</orcidid><orcidid>https://orcid.org/0000-0002-5837-799X</orcidid><orcidid>https://orcid.org/0000-0002-1725-5822</orcidid><orcidid>https://orcid.org/0000-0001-6033-6532</orcidid></search><sort><creationdate>202301</creationdate><title>Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming</title><author>Pedrero‐López, Luis V. ; Flores‐Ortiz, César M. ; Pérez‐García, Blanca ; Cruz‐Ortega, Rocío ; Mehltreter, Klaus ; Sánchez‐Coronado, María E. ; Hernández‐Portilla, Luis Barbo ; Contreras‐Jiménez, Gastón ; Orozco‐Segovia, Alma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-af93a8e825be17a9cdab7470084e669e4f47a689ce79a3e443b750401328d7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biochemistry and Metabolism</topic><topic>Cell membranes</topic><topic>Chlorophyll</topic><topic>Cloud forests</topic><topic>Dehydration</topic><topic>Energy metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Ferns</topic><topic>Ferns - metabolism</topic><topic>Gas chromatography</topic><topic>Germination</topic><topic>Hydration</topic><topic>Imbibition</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Liquid chromatography</topic><topic>Metabolism</topic><topic>Oleic acid</topic><topic>Oleic Acid - metabolism</topic><topic>Original Research</topic><topic>Palmitic Acid - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthetic apparatus</topic><topic>Priming</topic><topic>Spore germination</topic><topic>Spores</topic><topic>Spores - physiology</topic><topic>Stearic Acids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedrero‐López, Luis V.</creatorcontrib><creatorcontrib>Flores‐Ortiz, César M.</creatorcontrib><creatorcontrib>Pérez‐García, Blanca</creatorcontrib><creatorcontrib>Cruz‐Ortega, Rocío</creatorcontrib><creatorcontrib>Mehltreter, Klaus</creatorcontrib><creatorcontrib>Sánchez‐Coronado, María E.</creatorcontrib><creatorcontrib>Hernández‐Portilla, Luis Barbo</creatorcontrib><creatorcontrib>Contreras‐Jiménez, Gastón</creatorcontrib><creatorcontrib>Orozco‐Segovia, Alma</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedrero‐López, Luis V.</au><au>Flores‐Ortiz, César M.</au><au>Pérez‐García, Blanca</au><au>Cruz‐Ortega, Rocío</au><au>Mehltreter, Klaus</au><au>Sánchez‐Coronado, María E.</au><au>Hernández‐Portilla, Luis Barbo</au><au>Contreras‐Jiménez, Gastón</au><au>Orozco‐Segovia, Alma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2023-01</date><risdate>2023</risdate><volume>175</volume><issue>1</issue><spage>e13848</spage><epage>n/a</epage><pages>e13848-n/a</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>36628548</pmid><doi>10.1111/ppl.13848</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9069-1882</orcidid><orcidid>https://orcid.org/0000-0001-9448-6379</orcidid><orcidid>https://orcid.org/0000-0003-1720-1063</orcidid><orcidid>https://orcid.org/0000-0003-0620-6475</orcidid><orcidid>https://orcid.org/0000-0001-8661-5652</orcidid><orcidid>https://orcid.org/0000-0003-0143-6343</orcidid><orcidid>https://orcid.org/0000-0002-5837-799X</orcidid><orcidid>https://orcid.org/0000-0002-1725-5822</orcidid><orcidid>https://orcid.org/0000-0001-6033-6532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2023-01, Vol.175 (1), p.e13848-n/a
issn 0031-9317
1399-3054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107703
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biochemistry and Metabolism
Cell membranes
Chlorophyll
Cloud forests
Dehydration
Energy metabolism
Fatty acids
Fatty Acids - metabolism
Ferns
Ferns - metabolism
Gas chromatography
Germination
Hydration
Imbibition
Lipid Metabolism
Lipids
Liquid chromatography
Metabolism
Oleic acid
Oleic Acid - metabolism
Original Research
Palmitic Acid - metabolism
Photosynthesis
Photosynthetic apparatus
Priming
Spore germination
Spores
Spores - physiology
Stearic Acids - metabolism
title Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90chlorophyllous%20and%20crypto%E2%80%90chlorophyllous%20fern%20spores%20differ%20in%20their%20mobilisation%20of%20fatty%20acids%20during%20priming&rft.jtitle=Physiologia%20plantarum&rft.au=Pedrero%E2%80%90L%C3%B3pez,%20Luis%20V.&rft.date=2023-01&rft.volume=175&rft.issue=1&rft.spage=e13848&rft.epage=n/a&rft.pages=e13848-n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13848&rft_dat=%3Cproquest_pubme%3E2778853475%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778853475&rft_id=info:pmid/36628548&rfr_iscdi=true