GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization

Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta pharmacologica Sinica 2023-05, Vol.44 (5), p.999-1013
Hauptverfasser: Zhang, Ying, Zhang, Yi-yuan, Pan, Zhen-wei, Li, Qing-qi, Sun, Li-hua, Li, Xin, Gong, Man-yu, Yang, Xue-wen, Wang, Yan-ying, Li, Hao-dong, Xuan, Li-na, Shao, Ying-chun, Li, Meng-meng, Zhang, Ming-yu, Yu, Qi, Li, Zhange, Zhang, Xiao-fang, Liu, Dong-hua, Zhu, Yan-meng, Tan, Zhong-yue, Zhang, Yuan-yuan, Liu, Yun-qi, Zhang, Yong, Jiao, Lei, Yang, Bao-feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1013
container_issue 5
container_start_page 999
container_title Acta pharmacologica Sinica
container_volume 44
creator Zhang, Ying
Zhang, Yi-yuan
Pan, Zhen-wei
Li, Qing-qi
Sun, Li-hua
Li, Xin
Gong, Man-yu
Yang, Xue-wen
Wang, Yan-ying
Li, Hao-dong
Xuan, Li-na
Shao, Ying-chun
Li, Meng-meng
Zhang, Ming-yu
Yu, Qi
Li, Zhange
Zhang, Xiao-fang
Liu, Dong-hua
Zhu, Yan-meng
Tan, Zhong-yue
Zhang, Yuan-yuan
Liu, Yun-qi
Zhang, Yong
Jiao, Lei
Yang, Bao-feng
description Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 μL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.
doi_str_mv 10.1038/s41401-022-01013-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801018131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3902-2259d4a37a41428283ba26a5a11892963b96773c126c8fe78faffaf8998b18793</originalsourceid><addsrcrecordid>eNp9UU2PFCEQJUbjrqN_wIMh8eIFlwKmgZMxuzuzm2ziwY8robuZGTbdMEL3GP0Xnv1F_itpe1w_DiYkUNSrV_XqIfQU6EugXJ1lAYICoYwRChQ4YffQKUixJJItxf3yriQQQRU_QY9yvqWUMw76ITrhFRdS6-oUfVtfrADwPsU-Di7jT3EMLd452_mwxT7g1tvaDb7BvW8cPniL8-D7sbPDBLi6XhH4_pV8uFyvzt5ezEHvStHgWuxCG4ed67ztpg5bF_wQE25c1-E-1r7zXwpNDNiWnsHFg81NYU7H78fowcZ22T053gv0fnX57vyK3LxZX5-_viEN15QRxpa6FZZLW_bBFFO8tqyySwugNNMVr3UlJW-AVY3aOKk2dlOO0lrVoKTmC_Rq5t2PdZm9cWFItjP75HubPptovfk7E_zObOPBlKVToQQrDC-ODCl-HF0eTO_zJNMWVWM2THJRQTWZtEDP_4HexjGFos8wNdmogE8oNqOaFHNObnM3DVAzmW9m800x3_w030xTPPtTx13JL7cLgM-AXFJh69Lv3v-h_QFl6Lw6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801018131</pqid></control><display><type>article</type><title>GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Ying ; Zhang, Yi-yuan ; Pan, Zhen-wei ; Li, Qing-qi ; Sun, Li-hua ; Li, Xin ; Gong, Man-yu ; Yang, Xue-wen ; Wang, Yan-ying ; Li, Hao-dong ; Xuan, Li-na ; Shao, Ying-chun ; Li, Meng-meng ; Zhang, Ming-yu ; Yu, Qi ; Li, Zhange ; Zhang, Xiao-fang ; Liu, Dong-hua ; Zhu, Yan-meng ; Tan, Zhong-yue ; Zhang, Yuan-yuan ; Liu, Yun-qi ; Zhang, Yong ; Jiao, Lei ; Yang, Bao-feng</creator><creatorcontrib>Zhang, Ying ; Zhang, Yi-yuan ; Pan, Zhen-wei ; Li, Qing-qi ; Sun, Li-hua ; Li, Xin ; Gong, Man-yu ; Yang, Xue-wen ; Wang, Yan-ying ; Li, Hao-dong ; Xuan, Li-na ; Shao, Ying-chun ; Li, Meng-meng ; Zhang, Ming-yu ; Yu, Qi ; Li, Zhange ; Zhang, Xiao-fang ; Liu, Dong-hua ; Zhu, Yan-meng ; Tan, Zhong-yue ; Zhang, Yuan-yuan ; Liu, Yun-qi ; Zhang, Yong ; Jiao, Lei ; Yang, Bao-feng</creatorcontrib><description>Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 μL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.</description><identifier>ISSN: 1671-4083</identifier><identifier>EISSN: 1745-7254</identifier><identifier>DOI: 10.1038/s41401-022-01013-2</identifier><identifier>PMID: 36347996</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Biopsy ; Bone Morphogenetic Proteins - metabolism ; Chemokine CXCL12 - drug effects ; Chemokine CXCL12 - metabolism ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - complications ; Diabetes Mellitus, Experimental - drug therapy ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Endothelial Progenitor Cells - metabolism ; Endothelial Progenitor Cells - pathology ; Genetic engineering ; Growth differentiation factor 11 ; Growth Differentiation Factors - metabolism ; Growth Differentiation Factors - therapeutic use ; Homing behavior ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - drug effects ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Immunology ; Internal Medicine ; Medical Microbiology ; Mice ; Molecular modelling ; Neovascularization, Physiologic ; Pharmacology/Toxicology ; Progenitor cells ; Recombinant Proteins - metabolism ; Recombinant Proteins - therapeutic use ; Regeneration ; siRNA ; Skin ; Topical application ; Vaccine ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - drug effects ; Vascular Endothelial Growth Factor A - metabolism ; Vascularization ; Wound healing ; Wound Healing - drug effects</subject><ispartof>Acta pharmacologica Sinica, 2023-05, Vol.44 (5), p.999-1013</ispartof><rights>The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society.</rights><rights>The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3902-2259d4a37a41428283ba26a5a11892963b96773c126c8fe78faffaf8998b18793</citedby><cites>FETCH-LOGICAL-c3902-2259d4a37a41428283ba26a5a11892963b96773c126c8fe78faffaf8998b18793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104842/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104842/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36347996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhang, Yi-yuan</creatorcontrib><creatorcontrib>Pan, Zhen-wei</creatorcontrib><creatorcontrib>Li, Qing-qi</creatorcontrib><creatorcontrib>Sun, Li-hua</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Gong, Man-yu</creatorcontrib><creatorcontrib>Yang, Xue-wen</creatorcontrib><creatorcontrib>Wang, Yan-ying</creatorcontrib><creatorcontrib>Li, Hao-dong</creatorcontrib><creatorcontrib>Xuan, Li-na</creatorcontrib><creatorcontrib>Shao, Ying-chun</creatorcontrib><creatorcontrib>Li, Meng-meng</creatorcontrib><creatorcontrib>Zhang, Ming-yu</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Li, Zhange</creatorcontrib><creatorcontrib>Zhang, Xiao-fang</creatorcontrib><creatorcontrib>Liu, Dong-hua</creatorcontrib><creatorcontrib>Zhu, Yan-meng</creatorcontrib><creatorcontrib>Tan, Zhong-yue</creatorcontrib><creatorcontrib>Zhang, Yuan-yuan</creatorcontrib><creatorcontrib>Liu, Yun-qi</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Yang, Bao-feng</creatorcontrib><title>GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization</title><title>Acta pharmacologica Sinica</title><addtitle>Acta Pharmacol Sin</addtitle><addtitle>Acta Pharmacol Sin</addtitle><description>Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 μL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biopsy</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Chemokine CXCL12 - drug effects</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - complications</subject><subject>Diabetes Mellitus, Experimental - drug therapy</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Endothelial Progenitor Cells - metabolism</subject><subject>Endothelial Progenitor Cells - pathology</subject><subject>Genetic engineering</subject><subject>Growth differentiation factor 11</subject><subject>Growth Differentiation Factors - metabolism</subject><subject>Growth Differentiation Factors - therapeutic use</subject><subject>Homing behavior</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - drug effects</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Immunology</subject><subject>Internal Medicine</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Neovascularization, Physiologic</subject><subject>Pharmacology/Toxicology</subject><subject>Progenitor cells</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombinant Proteins - therapeutic use</subject><subject>Regeneration</subject><subject>siRNA</subject><subject>Skin</subject><subject>Topical application</subject><subject>Vaccine</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - drug effects</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascularization</subject><subject>Wound healing</subject><subject>Wound Healing - drug effects</subject><issn>1671-4083</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU2PFCEQJUbjrqN_wIMh8eIFlwKmgZMxuzuzm2ziwY8robuZGTbdMEL3GP0Xnv1F_itpe1w_DiYkUNSrV_XqIfQU6EugXJ1lAYICoYwRChQ4YffQKUixJJItxf3yriQQQRU_QY9yvqWUMw76ITrhFRdS6-oUfVtfrADwPsU-Di7jT3EMLd452_mwxT7g1tvaDb7BvW8cPniL8-D7sbPDBLi6XhH4_pV8uFyvzt5ezEHvStHgWuxCG4ed67ztpg5bF_wQE25c1-E-1r7zXwpNDNiWnsHFg81NYU7H78fowcZ22T053gv0fnX57vyK3LxZX5-_viEN15QRxpa6FZZLW_bBFFO8tqyySwugNNMVr3UlJW-AVY3aOKk2dlOO0lrVoKTmC_Rq5t2PdZm9cWFItjP75HubPptovfk7E_zObOPBlKVToQQrDC-ODCl-HF0eTO_zJNMWVWM2THJRQTWZtEDP_4HexjGFos8wNdmogE8oNqOaFHNObnM3DVAzmW9m800x3_w030xTPPtTx13JL7cLgM-AXFJh69Lv3v-h_QFl6Lw6</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhang, Ying</creator><creator>Zhang, Yi-yuan</creator><creator>Pan, Zhen-wei</creator><creator>Li, Qing-qi</creator><creator>Sun, Li-hua</creator><creator>Li, Xin</creator><creator>Gong, Man-yu</creator><creator>Yang, Xue-wen</creator><creator>Wang, Yan-ying</creator><creator>Li, Hao-dong</creator><creator>Xuan, Li-na</creator><creator>Shao, Ying-chun</creator><creator>Li, Meng-meng</creator><creator>Zhang, Ming-yu</creator><creator>Yu, Qi</creator><creator>Li, Zhange</creator><creator>Zhang, Xiao-fang</creator><creator>Liu, Dong-hua</creator><creator>Zhu, Yan-meng</creator><creator>Tan, Zhong-yue</creator><creator>Zhang, Yuan-yuan</creator><creator>Liu, Yun-qi</creator><creator>Zhang, Yong</creator><creator>Jiao, Lei</creator><creator>Yang, Bao-feng</creator><general>Springer Nature Singapore</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230501</creationdate><title>GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization</title><author>Zhang, Ying ; Zhang, Yi-yuan ; Pan, Zhen-wei ; Li, Qing-qi ; Sun, Li-hua ; Li, Xin ; Gong, Man-yu ; Yang, Xue-wen ; Wang, Yan-ying ; Li, Hao-dong ; Xuan, Li-na ; Shao, Ying-chun ; Li, Meng-meng ; Zhang, Ming-yu ; Yu, Qi ; Li, Zhange ; Zhang, Xiao-fang ; Liu, Dong-hua ; Zhu, Yan-meng ; Tan, Zhong-yue ; Zhang, Yuan-yuan ; Liu, Yun-qi ; Zhang, Yong ; Jiao, Lei ; Yang, Bao-feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3902-2259d4a37a41428283ba26a5a11892963b96773c126c8fe78faffaf8998b18793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biopsy</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Chemokine CXCL12 - drug effects</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - complications</topic><topic>Diabetes Mellitus, Experimental - drug therapy</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Endothelial Progenitor Cells - metabolism</topic><topic>Endothelial Progenitor Cells - pathology</topic><topic>Genetic engineering</topic><topic>Growth differentiation factor 11</topic><topic>Growth Differentiation Factors - metabolism</topic><topic>Growth Differentiation Factors - therapeutic use</topic><topic>Homing behavior</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - drug effects</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Immunology</topic><topic>Internal Medicine</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Neovascularization, Physiologic</topic><topic>Pharmacology/Toxicology</topic><topic>Progenitor cells</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombinant Proteins - therapeutic use</topic><topic>Regeneration</topic><topic>siRNA</topic><topic>Skin</topic><topic>Topical application</topic><topic>Vaccine</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - drug effects</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascularization</topic><topic>Wound healing</topic><topic>Wound Healing - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhang, Yi-yuan</creatorcontrib><creatorcontrib>Pan, Zhen-wei</creatorcontrib><creatorcontrib>Li, Qing-qi</creatorcontrib><creatorcontrib>Sun, Li-hua</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Gong, Man-yu</creatorcontrib><creatorcontrib>Yang, Xue-wen</creatorcontrib><creatorcontrib>Wang, Yan-ying</creatorcontrib><creatorcontrib>Li, Hao-dong</creatorcontrib><creatorcontrib>Xuan, Li-na</creatorcontrib><creatorcontrib>Shao, Ying-chun</creatorcontrib><creatorcontrib>Li, Meng-meng</creatorcontrib><creatorcontrib>Zhang, Ming-yu</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Li, Zhange</creatorcontrib><creatorcontrib>Zhang, Xiao-fang</creatorcontrib><creatorcontrib>Liu, Dong-hua</creatorcontrib><creatorcontrib>Zhu, Yan-meng</creatorcontrib><creatorcontrib>Tan, Zhong-yue</creatorcontrib><creatorcontrib>Zhang, Yuan-yuan</creatorcontrib><creatorcontrib>Liu, Yun-qi</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Yang, Bao-feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta pharmacologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ying</au><au>Zhang, Yi-yuan</au><au>Pan, Zhen-wei</au><au>Li, Qing-qi</au><au>Sun, Li-hua</au><au>Li, Xin</au><au>Gong, Man-yu</au><au>Yang, Xue-wen</au><au>Wang, Yan-ying</au><au>Li, Hao-dong</au><au>Xuan, Li-na</au><au>Shao, Ying-chun</au><au>Li, Meng-meng</au><au>Zhang, Ming-yu</au><au>Yu, Qi</au><au>Li, Zhange</au><au>Zhang, Xiao-fang</au><au>Liu, Dong-hua</au><au>Zhu, Yan-meng</au><au>Tan, Zhong-yue</au><au>Zhang, Yuan-yuan</au><au>Liu, Yun-qi</au><au>Zhang, Yong</au><au>Jiao, Lei</au><au>Yang, Bao-feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization</atitle><jtitle>Acta pharmacologica Sinica</jtitle><stitle>Acta Pharmacol Sin</stitle><addtitle>Acta Pharmacol Sin</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>44</volume><issue>5</issue><spage>999</spage><epage>1013</epage><pages>999-1013</pages><issn>1671-4083</issn><eissn>1745-7254</eissn><abstract>Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 μL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>36347996</pmid><doi>10.1038/s41401-022-01013-2</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1671-4083
ispartof Acta pharmacologica Sinica, 2023-05, Vol.44 (5), p.999-1013
issn 1671-4083
1745-7254
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104842
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animals
Biomedical and Life Sciences
Biomedicine
Biopsy
Bone Morphogenetic Proteins - metabolism
Chemokine CXCL12 - drug effects
Chemokine CXCL12 - metabolism
Diabetes
Diabetes mellitus
Diabetes Mellitus, Experimental - complications
Diabetes Mellitus, Experimental - drug therapy
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Endothelial Progenitor Cells - metabolism
Endothelial Progenitor Cells - pathology
Genetic engineering
Growth differentiation factor 11
Growth Differentiation Factors - metabolism
Growth Differentiation Factors - therapeutic use
Homing behavior
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - drug effects
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Immunology
Internal Medicine
Medical Microbiology
Mice
Molecular modelling
Neovascularization, Physiologic
Pharmacology/Toxicology
Progenitor cells
Recombinant Proteins - metabolism
Recombinant Proteins - therapeutic use
Regeneration
siRNA
Skin
Topical application
Vaccine
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - drug effects
Vascular Endothelial Growth Factor A - metabolism
Vascularization
Wound healing
Wound Healing - drug effects
title GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GDF11%20promotes%20wound%20healing%20in%20diabetic%20mice%20via%20stimulating%20HIF-1%C9%91-VEGF/SDF-1%C9%91-mediated%20endothelial%20progenitor%20cell%20mobilization%20and%20neovascularization&rft.jtitle=Acta%20pharmacologica%20Sinica&rft.au=Zhang,%20Ying&rft.date=2023-05-01&rft.volume=44&rft.issue=5&rft.spage=999&rft.epage=1013&rft.pages=999-1013&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/10.1038/s41401-022-01013-2&rft_dat=%3Cproquest_pubme%3E2801018131%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801018131&rft_id=info:pmid/36347996&rfr_iscdi=true