A neurocomputational theory of nightmares: the role of formal properties of nightmare images
Abstract Study Objectives To test and extend Levin & Nielsen’s (2007) Affective Network Dysfunction (AND) model with nightmare disorder (ND) image characteristics, and then to implement the extension as a computational simulation, the Disturbed Dreaming Model (DDM). Methods We used AnyLogic V7.2...
Gespeichert in:
Veröffentlicht in: | Sleep Advances 2021, Vol.2 (1), p.zpab009-zpab009 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | zpab009 |
---|---|
container_issue | 1 |
container_start_page | zpab009 |
container_title | Sleep Advances |
container_volume | 2 |
creator | McNamara, Patrick Wildman, Wesley J Hodulik, George Rohr, David |
description | Abstract
Study Objectives
To test and extend Levin & Nielsen’s (2007) Affective Network Dysfunction (AND) model with nightmare disorder (ND) image characteristics, and then to implement the extension as a computational simulation, the Disturbed Dreaming Model (DDM).
Methods
We used AnyLogic V7.2 to computationally implement an extended AND model incorporating quantitative effects of image characteristics including valence, dominance, and arousal. We explored the DDM parameter space by varying parameters, running approximately one million runs, each for one month of model time, varying pathway bifurcation thresholds, image characteristics, and individual-difference variables to quantitively evaluate their combinatory effects on nightmare symptomology.
Results
The DDM shows that the AND model extended with pathway bifurcations and image properties is computationally coherent. Varying levels of image properties, we found that when nightmare images exhibit lower dominance and arousal levels, the ND agent will choose to sleep but then has a traumatic nightmare, whereas, when images exhibit greater than average dominance and arousal levels, the nightmares trigger sleep-avoidant behavior, but lower overall nightmare distress at the price of exacerbating nightmare effects during waking hours.
Conclusions
Computational simulation of nightmare symptomology within the AND framework suggests that nightmare image properties significantly influence nightmare symptomology. Computational models for sleep and dream studies are powerful tools for testing quantitative effects of variables affecting nightmare symptomology. The DDM confirms the value of extending the Levin & Nielsen AND model of disturbed dreaming/ND. |
doi_str_mv | 10.1093/sleepadvances/zpab009 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A816218621</galeid><oup_id>10.1093/sleepadvances/zpab009</oup_id><sourcerecordid>A816218621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3839-4e291cdb2496a3a4526a1b1d223ba00873fed63ff88beaa8b299f4a9a0f8c47a3</originalsourceid><addsrcrecordid>eNqNkV9r2zAUxUVZWUraj7Dix70k1R_bkfYyQtnWQmEv61tBXMtXiYYteZJdaD_9FJKW5K0IIXH0O4crDiFfGF0yqsRN6hAHaJ_BG0w3rwM0lKozcsFrwRcVZfzT0X1GrlL6SynlFRO1YJ_JTKyYEtWKXZCndeFxisGEfphGGF3w0BXjFkN8KYItvNtsxx4ipm87tYihw51uQ-wzOMQwYBwdphO4cD1sMF2ScwtdwqvDOSePP3_8ub1bPPz-dX-7flgYIYValMgVM23DS1WDgLLiNbCGtZyLBiiVK2GxrYW1UjYIIBuulC1BAbXSlCsQc_J9nztMTY-tQT9G6PQQ8xjxRQdw-vTFu63ehGfNKKOlUHVO-HpIiOHfhGnUvUsGuw48hilpLlkpWS3LHbrcoxvoUDtvQ440ebXYOxM8Wpf1daY5k3lnQ7U3mBhSimjfB2NU7-rUJ3XqQ53Zd338q3fXW3kZoHsgTMMHM_8DCfa0eA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814816846</pqid></control><display><type>article</type><title>A neurocomputational theory of nightmares: the role of formal properties of nightmare images</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>McNamara, Patrick ; Wildman, Wesley J ; Hodulik, George ; Rohr, David</creator><creatorcontrib>McNamara, Patrick ; Wildman, Wesley J ; Hodulik, George ; Rohr, David</creatorcontrib><description>Abstract
Study Objectives
To test and extend Levin & Nielsen’s (2007) Affective Network Dysfunction (AND) model with nightmare disorder (ND) image characteristics, and then to implement the extension as a computational simulation, the Disturbed Dreaming Model (DDM).
Methods
We used AnyLogic V7.2 to computationally implement an extended AND model incorporating quantitative effects of image characteristics including valence, dominance, and arousal. We explored the DDM parameter space by varying parameters, running approximately one million runs, each for one month of model time, varying pathway bifurcation thresholds, image characteristics, and individual-difference variables to quantitively evaluate their combinatory effects on nightmare symptomology.
Results
The DDM shows that the AND model extended with pathway bifurcations and image properties is computationally coherent. Varying levels of image properties, we found that when nightmare images exhibit lower dominance and arousal levels, the ND agent will choose to sleep but then has a traumatic nightmare, whereas, when images exhibit greater than average dominance and arousal levels, the nightmares trigger sleep-avoidant behavior, but lower overall nightmare distress at the price of exacerbating nightmare effects during waking hours.
Conclusions
Computational simulation of nightmare symptomology within the AND framework suggests that nightmare image properties significantly influence nightmare symptomology. Computational models for sleep and dream studies are powerful tools for testing quantitative effects of variables affecting nightmare symptomology. The DDM confirms the value of extending the Levin & Nielsen AND model of disturbed dreaming/ND.</description><identifier>ISSN: 2632-5012</identifier><identifier>EISSN: 2632-5012</identifier><identifier>DOI: 10.1093/sleepadvances/zpab009</identifier><identifier>PMID: 37193571</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Analysis ; Computer simulation ; Computer-generated environments ; Nightmares ; Original ; Simulation methods ; Sleep</subject><ispartof>Sleep Advances, 2021, Vol.2 (1), p.zpab009-zpab009</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Sleep Research Society. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Sleep Research Society.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3839-4e291cdb2496a3a4526a1b1d223ba00873fed63ff88beaa8b299f4a9a0f8c47a3</cites><orcidid>0000-0003-4065-0385 ; 0000-0002-7571-1259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104396/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104396/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37193571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNamara, Patrick</creatorcontrib><creatorcontrib>Wildman, Wesley J</creatorcontrib><creatorcontrib>Hodulik, George</creatorcontrib><creatorcontrib>Rohr, David</creatorcontrib><title>A neurocomputational theory of nightmares: the role of formal properties of nightmare images</title><title>Sleep Advances</title><addtitle>Sleep Adv</addtitle><description>Abstract
Study Objectives
To test and extend Levin & Nielsen’s (2007) Affective Network Dysfunction (AND) model with nightmare disorder (ND) image characteristics, and then to implement the extension as a computational simulation, the Disturbed Dreaming Model (DDM).
Methods
We used AnyLogic V7.2 to computationally implement an extended AND model incorporating quantitative effects of image characteristics including valence, dominance, and arousal. We explored the DDM parameter space by varying parameters, running approximately one million runs, each for one month of model time, varying pathway bifurcation thresholds, image characteristics, and individual-difference variables to quantitively evaluate their combinatory effects on nightmare symptomology.
Results
The DDM shows that the AND model extended with pathway bifurcations and image properties is computationally coherent. Varying levels of image properties, we found that when nightmare images exhibit lower dominance and arousal levels, the ND agent will choose to sleep but then has a traumatic nightmare, whereas, when images exhibit greater than average dominance and arousal levels, the nightmares trigger sleep-avoidant behavior, but lower overall nightmare distress at the price of exacerbating nightmare effects during waking hours.
Conclusions
Computational simulation of nightmare symptomology within the AND framework suggests that nightmare image properties significantly influence nightmare symptomology. Computational models for sleep and dream studies are powerful tools for testing quantitative effects of variables affecting nightmare symptomology. The DDM confirms the value of extending the Levin & Nielsen AND model of disturbed dreaming/ND.</description><subject>Analysis</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Nightmares</subject><subject>Original</subject><subject>Simulation methods</subject><subject>Sleep</subject><issn>2632-5012</issn><issn>2632-5012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkV9r2zAUxUVZWUraj7Dix70k1R_bkfYyQtnWQmEv61tBXMtXiYYteZJdaD_9FJKW5K0IIXH0O4crDiFfGF0yqsRN6hAHaJ_BG0w3rwM0lKozcsFrwRcVZfzT0X1GrlL6SynlFRO1YJ_JTKyYEtWKXZCndeFxisGEfphGGF3w0BXjFkN8KYItvNtsxx4ipm87tYihw51uQ-wzOMQwYBwdphO4cD1sMF2ScwtdwqvDOSePP3_8ub1bPPz-dX-7flgYIYValMgVM23DS1WDgLLiNbCGtZyLBiiVK2GxrYW1UjYIIBuulC1BAbXSlCsQc_J9nztMTY-tQT9G6PQQ8xjxRQdw-vTFu63ehGfNKKOlUHVO-HpIiOHfhGnUvUsGuw48hilpLlkpWS3LHbrcoxvoUDtvQ440ebXYOxM8Wpf1daY5k3lnQ7U3mBhSimjfB2NU7-rUJ3XqQ53Zd338q3fXW3kZoHsgTMMHM_8DCfa0eA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>McNamara, Patrick</creator><creator>Wildman, Wesley J</creator><creator>Hodulik, George</creator><creator>Rohr, David</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4065-0385</orcidid><orcidid>https://orcid.org/0000-0002-7571-1259</orcidid></search><sort><creationdate>2021</creationdate><title>A neurocomputational theory of nightmares: the role of formal properties of nightmare images</title><author>McNamara, Patrick ; Wildman, Wesley J ; Hodulik, George ; Rohr, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3839-4e291cdb2496a3a4526a1b1d223ba00873fed63ff88beaa8b299f4a9a0f8c47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Nightmares</topic><topic>Original</topic><topic>Simulation methods</topic><topic>Sleep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNamara, Patrick</creatorcontrib><creatorcontrib>Wildman, Wesley J</creatorcontrib><creatorcontrib>Hodulik, George</creatorcontrib><creatorcontrib>Rohr, David</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sleep Advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNamara, Patrick</au><au>Wildman, Wesley J</au><au>Hodulik, George</au><au>Rohr, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neurocomputational theory of nightmares: the role of formal properties of nightmare images</atitle><jtitle>Sleep Advances</jtitle><addtitle>Sleep Adv</addtitle><date>2021</date><risdate>2021</risdate><volume>2</volume><issue>1</issue><spage>zpab009</spage><epage>zpab009</epage><pages>zpab009-zpab009</pages><issn>2632-5012</issn><eissn>2632-5012</eissn><abstract>Abstract
Study Objectives
To test and extend Levin & Nielsen’s (2007) Affective Network Dysfunction (AND) model with nightmare disorder (ND) image characteristics, and then to implement the extension as a computational simulation, the Disturbed Dreaming Model (DDM).
Methods
We used AnyLogic V7.2 to computationally implement an extended AND model incorporating quantitative effects of image characteristics including valence, dominance, and arousal. We explored the DDM parameter space by varying parameters, running approximately one million runs, each for one month of model time, varying pathway bifurcation thresholds, image characteristics, and individual-difference variables to quantitively evaluate their combinatory effects on nightmare symptomology.
Results
The DDM shows that the AND model extended with pathway bifurcations and image properties is computationally coherent. Varying levels of image properties, we found that when nightmare images exhibit lower dominance and arousal levels, the ND agent will choose to sleep but then has a traumatic nightmare, whereas, when images exhibit greater than average dominance and arousal levels, the nightmares trigger sleep-avoidant behavior, but lower overall nightmare distress at the price of exacerbating nightmare effects during waking hours.
Conclusions
Computational simulation of nightmare symptomology within the AND framework suggests that nightmare image properties significantly influence nightmare symptomology. Computational models for sleep and dream studies are powerful tools for testing quantitative effects of variables affecting nightmare symptomology. The DDM confirms the value of extending the Levin & Nielsen AND model of disturbed dreaming/ND.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>37193571</pmid><doi>10.1093/sleepadvances/zpab009</doi><orcidid>https://orcid.org/0000-0003-4065-0385</orcidid><orcidid>https://orcid.org/0000-0002-7571-1259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-5012 |
ispartof | Sleep Advances, 2021, Vol.2 (1), p.zpab009-zpab009 |
issn | 2632-5012 2632-5012 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104396 |
source | DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Computer simulation Computer-generated environments Nightmares Original Simulation methods Sleep |
title | A neurocomputational theory of nightmares: the role of formal properties of nightmare images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neurocomputational%20theory%20of%20nightmares:%20the%20role%20of%20formal%20properties%20of%20nightmare%20images&rft.jtitle=Sleep%20Advances&rft.au=McNamara,%20Patrick&rft.date=2021&rft.volume=2&rft.issue=1&rft.spage=zpab009&rft.epage=zpab009&rft.pages=zpab009-zpab009&rft.issn=2632-5012&rft.eissn=2632-5012&rft_id=info:doi/10.1093/sleepadvances/zpab009&rft_dat=%3Cgale_pubme%3EA816218621%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814816846&rft_id=info:pmid/37193571&rft_galeid=A816218621&rft_oup_id=10.1093/sleepadvances/zpab009&rfr_iscdi=true |