Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials
Summary Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals (e.g., clinics or communities) and measure outcomes on individuals in those groups. While offering many advantages, this experimental design introduces challenges that are only partially addressed by ex...
Gespeichert in:
Veröffentlicht in: | Biostatistics (Oxford, England) England), 2023-04, Vol.24 (2), p.502-517 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | 2 |
container_start_page | 502 |
container_title | Biostatistics (Oxford, England) |
container_volume | 24 |
creator | Balzer, Laura B van der Laan, Mark Ayieko, James Kamya, Moses Chamie, Gabriel Schwab, Joshua Havlir, Diane V Petersen, Maya L |
description | Summary
Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals (e.g., clinics or communities) and measure outcomes on individuals in those groups. While offering many advantages, this experimental design introduces challenges that are only partially addressed by existing analytic approaches. First, outcomes are often missing for some individuals within clusters. Failing to appropriately adjust for differential outcome measurement can result in biased estimates and inference. Second, CRTs often randomize limited numbers of clusters, resulting in chance imbalances on baseline outcome predictors between arms. Failing to adaptively adjust for these imbalances and other predictive covariates can result in efficiency losses. To address these methodological gaps, we propose and evaluate a novel two-stage targeted minimum loss-based estimator to adjust for baseline covariates in a manner that optimizes precision, after controlling for baseline and postbaseline causes of missing outcomes. Finite sample simulations illustrate that our approach can nearly eliminate bias due to differential outcome measurement, while existing CRT estimators yield misleading results and inferences. Application to real data from the SEARCH community randomized trial demonstrates the gains in efficiency afforded through adaptive adjustment for baseline covariates, after controlling for missingness on individual-level outcomes. |
doi_str_mv | 10.1093/biostatistics/kxab043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10102904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biostatistics/kxab043</oup_id><sourcerecordid>2613291680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-767b05a040542a8dfa0ec18fb1ada6654400fe50074c8bb43a00ecf433214d7b3</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhi1UBMvCT2jlYy-Bcex8naoK8SUtQojt2bKdCXWbxKntAMuvJ2W3K_bW04w0z_vOaF5CPjM4ZVDxM21diCraEK0JZ79flAbB98iMibxMBM-KT-99lohciENyFMIvgDTlOT8gh1xUvIKSz8j98tklD1E9Il3eLi5odNRjPRqk2qpAVV9T2w3ePSHFprHGYm9W1PbUtGOI6KmfENfZV6xp9Fa14ZjsN1PBk02dkx-XF8vz62Rxd3Vz_n2RGJHxmBR5oSFTICATqSrrRgEaVjaaqVrleSYEQIMZQCFMqbXgCiagEZynTNSF5nPybe07jLrD2mAfvWrl4G2n_Eo6ZeXupLc_5aN7kgwYpNX0rTn5unHw7s-IIcrOBoNtq3p0Y5BpznhasbyECc3WqPEuBI_Ndg8D-TcPuZOH3OQx6b58PHKr-hfABMAacOPwn55vOIie2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613291680</pqid></control><display><type>article</type><title>Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Balzer, Laura B ; van der Laan, Mark ; Ayieko, James ; Kamya, Moses ; Chamie, Gabriel ; Schwab, Joshua ; Havlir, Diane V ; Petersen, Maya L</creator><creatorcontrib>Balzer, Laura B ; van der Laan, Mark ; Ayieko, James ; Kamya, Moses ; Chamie, Gabriel ; Schwab, Joshua ; Havlir, Diane V ; Petersen, Maya L</creatorcontrib><description>Summary
Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals (e.g., clinics or communities) and measure outcomes on individuals in those groups. While offering many advantages, this experimental design introduces challenges that are only partially addressed by existing analytic approaches. First, outcomes are often missing for some individuals within clusters. Failing to appropriately adjust for differential outcome measurement can result in biased estimates and inference. Second, CRTs often randomize limited numbers of clusters, resulting in chance imbalances on baseline outcome predictors between arms. Failing to adaptively adjust for these imbalances and other predictive covariates can result in efficiency losses. To address these methodological gaps, we propose and evaluate a novel two-stage targeted minimum loss-based estimator to adjust for baseline covariates in a manner that optimizes precision, after controlling for baseline and postbaseline causes of missing outcomes. Finite sample simulations illustrate that our approach can nearly eliminate bias due to differential outcome measurement, while existing CRT estimators yield misleading results and inferences. Application to real data from the SEARCH community randomized trial demonstrates the gains in efficiency afforded through adaptive adjustment for baseline covariates, after controlling for missingness on individual-level outcomes.</description><identifier>ISSN: 1465-4644</identifier><identifier>EISSN: 1468-4357</identifier><identifier>DOI: 10.1093/biostatistics/kxab043</identifier><identifier>PMID: 34939083</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bias ; Cluster Analysis ; Computer Simulation ; Humans ; Outcome Assessment, Health Care ; Probability ; Randomized Controlled Trials as Topic ; Research Design</subject><ispartof>Biostatistics (Oxford, England), 2023-04, Vol.24 (2), p.502-517</ispartof><rights>The Author 2021. Published by Oxford University Press. 2021</rights><rights>The Author 2021. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-767b05a040542a8dfa0ec18fb1ada6654400fe50074c8bb43a00ecf433214d7b3</citedby><cites>FETCH-LOGICAL-c453t-767b05a040542a8dfa0ec18fb1ada6654400fe50074c8bb43a00ecf433214d7b3</cites><orcidid>0000-0003-4941-2041 ; 0000-0002-3730-410X ; 0000-0002-5860-8081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34939083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balzer, Laura B</creatorcontrib><creatorcontrib>van der Laan, Mark</creatorcontrib><creatorcontrib>Ayieko, James</creatorcontrib><creatorcontrib>Kamya, Moses</creatorcontrib><creatorcontrib>Chamie, Gabriel</creatorcontrib><creatorcontrib>Schwab, Joshua</creatorcontrib><creatorcontrib>Havlir, Diane V</creatorcontrib><creatorcontrib>Petersen, Maya L</creatorcontrib><title>Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials</title><title>Biostatistics (Oxford, England)</title><addtitle>Biostatistics</addtitle><description>Summary
Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals (e.g., clinics or communities) and measure outcomes on individuals in those groups. While offering many advantages, this experimental design introduces challenges that are only partially addressed by existing analytic approaches. First, outcomes are often missing for some individuals within clusters. Failing to appropriately adjust for differential outcome measurement can result in biased estimates and inference. Second, CRTs often randomize limited numbers of clusters, resulting in chance imbalances on baseline outcome predictors between arms. Failing to adaptively adjust for these imbalances and other predictive covariates can result in efficiency losses. To address these methodological gaps, we propose and evaluate a novel two-stage targeted minimum loss-based estimator to adjust for baseline covariates in a manner that optimizes precision, after controlling for baseline and postbaseline causes of missing outcomes. Finite sample simulations illustrate that our approach can nearly eliminate bias due to differential outcome measurement, while existing CRT estimators yield misleading results and inferences. Application to real data from the SEARCH community randomized trial demonstrates the gains in efficiency afforded through adaptive adjustment for baseline covariates, after controlling for missingness on individual-level outcomes.</description><subject>Bias</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Outcome Assessment, Health Care</subject><subject>Probability</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Research Design</subject><issn>1465-4644</issn><issn>1468-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhi1UBMvCT2jlYy-Bcex8naoK8SUtQojt2bKdCXWbxKntAMuvJ2W3K_bW04w0z_vOaF5CPjM4ZVDxM21diCraEK0JZ79flAbB98iMibxMBM-KT-99lohciENyFMIvgDTlOT8gh1xUvIKSz8j98tklD1E9Il3eLi5odNRjPRqk2qpAVV9T2w3ePSHFprHGYm9W1PbUtGOI6KmfENfZV6xp9Fa14ZjsN1PBk02dkx-XF8vz62Rxd3Vz_n2RGJHxmBR5oSFTICATqSrrRgEaVjaaqVrleSYEQIMZQCFMqbXgCiagEZynTNSF5nPybe07jLrD2mAfvWrl4G2n_Eo6ZeXupLc_5aN7kgwYpNX0rTn5unHw7s-IIcrOBoNtq3p0Y5BpznhasbyECc3WqPEuBI_Ndg8D-TcPuZOH3OQx6b58PHKr-hfABMAacOPwn55vOIie2Q</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>Balzer, Laura B</creator><creator>van der Laan, Mark</creator><creator>Ayieko, James</creator><creator>Kamya, Moses</creator><creator>Chamie, Gabriel</creator><creator>Schwab, Joshua</creator><creator>Havlir, Diane V</creator><creator>Petersen, Maya L</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4941-2041</orcidid><orcidid>https://orcid.org/0000-0002-3730-410X</orcidid><orcidid>https://orcid.org/0000-0002-5860-8081</orcidid></search><sort><creationdate>20230414</creationdate><title>Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials</title><author>Balzer, Laura B ; van der Laan, Mark ; Ayieko, James ; Kamya, Moses ; Chamie, Gabriel ; Schwab, Joshua ; Havlir, Diane V ; Petersen, Maya L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-767b05a040542a8dfa0ec18fb1ada6654400fe50074c8bb43a00ecf433214d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Outcome Assessment, Health Care</topic><topic>Probability</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balzer, Laura B</creatorcontrib><creatorcontrib>van der Laan, Mark</creatorcontrib><creatorcontrib>Ayieko, James</creatorcontrib><creatorcontrib>Kamya, Moses</creatorcontrib><creatorcontrib>Chamie, Gabriel</creatorcontrib><creatorcontrib>Schwab, Joshua</creatorcontrib><creatorcontrib>Havlir, Diane V</creatorcontrib><creatorcontrib>Petersen, Maya L</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biostatistics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balzer, Laura B</au><au>van der Laan, Mark</au><au>Ayieko, James</au><au>Kamya, Moses</au><au>Chamie, Gabriel</au><au>Schwab, Joshua</au><au>Havlir, Diane V</au><au>Petersen, Maya L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials</atitle><jtitle>Biostatistics (Oxford, England)</jtitle><addtitle>Biostatistics</addtitle><date>2023-04-14</date><risdate>2023</risdate><volume>24</volume><issue>2</issue><spage>502</spage><epage>517</epage><pages>502-517</pages><issn>1465-4644</issn><eissn>1468-4357</eissn><abstract>Summary
Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals (e.g., clinics or communities) and measure outcomes on individuals in those groups. While offering many advantages, this experimental design introduces challenges that are only partially addressed by existing analytic approaches. First, outcomes are often missing for some individuals within clusters. Failing to appropriately adjust for differential outcome measurement can result in biased estimates and inference. Second, CRTs often randomize limited numbers of clusters, resulting in chance imbalances on baseline outcome predictors between arms. Failing to adaptively adjust for these imbalances and other predictive covariates can result in efficiency losses. To address these methodological gaps, we propose and evaluate a novel two-stage targeted minimum loss-based estimator to adjust for baseline covariates in a manner that optimizes precision, after controlling for baseline and postbaseline causes of missing outcomes. Finite sample simulations illustrate that our approach can nearly eliminate bias due to differential outcome measurement, while existing CRT estimators yield misleading results and inferences. Application to real data from the SEARCH community randomized trial demonstrates the gains in efficiency afforded through adaptive adjustment for baseline covariates, after controlling for missingness on individual-level outcomes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34939083</pmid><doi>10.1093/biostatistics/kxab043</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4941-2041</orcidid><orcidid>https://orcid.org/0000-0002-3730-410X</orcidid><orcidid>https://orcid.org/0000-0002-5860-8081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-4644 |
ispartof | Biostatistics (Oxford, England), 2023-04, Vol.24 (2), p.502-517 |
issn | 1465-4644 1468-4357 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10102904 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Bias Cluster Analysis Computer Simulation Humans Outcome Assessment, Health Care Probability Randomized Controlled Trials as Topic Research Design |
title | Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Stage%20TMLE%20to%20reduce%20bias%20and%20improve%20efficiency%20in%20cluster%20randomized%20trials&rft.jtitle=Biostatistics%20(Oxford,%20England)&rft.au=Balzer,%20Laura%20B&rft.date=2023-04-14&rft.volume=24&rft.issue=2&rft.spage=502&rft.epage=517&rft.pages=502-517&rft.issn=1465-4644&rft.eissn=1468-4357&rft_id=info:doi/10.1093/biostatistics/kxab043&rft_dat=%3Cproquest_pubme%3E2613291680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613291680&rft_id=info:pmid/34939083&rft_oup_id=10.1093/biostatistics/kxab043&rfr_iscdi=true |