Biodiversity patterns diverge along geographic temperature gradients

Models applying space‐for‐time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2023-02, Vol.29 (3), p.603-617
Hauptverfasser: Loewen, Charlie J. G., Jackson, Donald A., Gilbert, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 3
container_start_page 603
container_title Global change biology
container_volume 29
creator Loewen, Charlie J. G.
Jackson, Donald A.
Gilbert, Benjamin
description Models applying space‐for‐time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump‐shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation‐ and latitude‐driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion. Integrating historical lake sampling from a series of adjacent mountain ranges in western North America (a) we assessed variation across multiple dimensions of zooplankton biodiversity both within, and between, elevational and latitudinal gradients (b). We discovered contrasting patterns linked to geographic interactions, including weaker latitudinal relationships in high altitude, alpine lakes (c). Diversity trends diverged when contrasting elevational and latitudinal patterns, as did responses to mean temperatures and seasonality. These differences suggest that elevation and latitude have limited equivalence in their capacities to provide climate‐change refuge to migrating species.
doi_str_mv 10.1111/gcb.16457
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759933327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4147-ec827ca29551b06b5e4607457c4483f29377f28a5c805981c8d89a870594f8313</originalsourceid><addsrcrecordid>eNp1kE9PwjAYhxujEUQPfgGzxJOHQf-u3ckIKpqQeNFz03XdKIFttgPDt7cwJHqwl_Z9--T3vnkAuEZwiMIZlTobooQyfgL6iCQsxlQkp7s3ozGCiPTAhfcLCCHBMDkHPZKgJGVp2gePY1vndmOct-02alTbGlf5aN8qTaSWdVVGpalLp5q51VFrVo1xql07E4Vebk3V-ktwVqilN1eHewA-np_eJy_x7G36OnmYxZoiymOjBeZa4ZQxlMEkY4YmkIe1NaWCFDglnBdYKKYFZKlAWuQiVYKHghaCIDIA911us85WJtdhtlNL2Ti7Um4ra2Xl35_KzmVZb2RwACHDOCTcHhJc_bk2vpWLeu2qsLTEPAghhGAeqLuO0q723pniOAJBuTMug3G5Nx7Ym987HckfxQEYdcCXXZrt_0lyOhl3kd9JKIpk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759933327</pqid></control><display><type>article</type><title>Biodiversity patterns diverge along geographic temperature gradients</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Loewen, Charlie J. G. ; Jackson, Donald A. ; Gilbert, Benjamin</creator><creatorcontrib>Loewen, Charlie J. G. ; Jackson, Donald A. ; Gilbert, Benjamin</creatorcontrib><description>Models applying space‐for‐time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump‐shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation‐ and latitude‐driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion. Integrating historical lake sampling from a series of adjacent mountain ranges in western North America (a) we assessed variation across multiple dimensions of zooplankton biodiversity both within, and between, elevational and latitudinal gradients (b). We discovered contrasting patterns linked to geographic interactions, including weaker latitudinal relationships in high altitude, alpine lakes (c). Diversity trends diverged when contrasting elevational and latitudinal patterns, as did responses to mean temperatures and seasonality. These differences suggest that elevation and latitude have limited equivalence in their capacities to provide climate‐change refuge to migrating species.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.16457</identifier><identifier>PMID: 36169599</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Altitude ; Animals ; Biodiversity ; body size ; Climate change ; Climate prediction ; conservation biogeography ; Dispersion ; Divergence ; Elevation ; elevational diversity gradient ; environmental filtering ; Food Chain ; Food chains ; Food webs ; Freshwater lakes ; functional diversity ; Lakes ; Latitude ; latitudinal diversity gradient ; Mountain lakes ; phylogenetic diversity ; Phylogenetics ; Phylogeny ; Range extension ; Refuges ; Refugia ; Species richness ; Temperature ; Temperature gradients ; Trends ; Zooplankton</subject><ispartof>Global change biology, 2023-02, Vol.29 (3), p.603-617</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Global Change Biology published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4147-ec827ca29551b06b5e4607457c4483f29377f28a5c805981c8d89a870594f8313</citedby><cites>FETCH-LOGICAL-c4147-ec827ca29551b06b5e4607457c4483f29377f28a5c805981c8d89a870594f8313</cites><orcidid>0000-0002-4947-6822 ; 0000-0002-4389-4134 ; 0000-0002-6107-0753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.16457$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.16457$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36169599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loewen, Charlie J. G.</creatorcontrib><creatorcontrib>Jackson, Donald A.</creatorcontrib><creatorcontrib>Gilbert, Benjamin</creatorcontrib><title>Biodiversity patterns diverge along geographic temperature gradients</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Models applying space‐for‐time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump‐shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation‐ and latitude‐driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion. Integrating historical lake sampling from a series of adjacent mountain ranges in western North America (a) we assessed variation across multiple dimensions of zooplankton biodiversity both within, and between, elevational and latitudinal gradients (b). We discovered contrasting patterns linked to geographic interactions, including weaker latitudinal relationships in high altitude, alpine lakes (c). Diversity trends diverged when contrasting elevational and latitudinal patterns, as did responses to mean temperatures and seasonality. These differences suggest that elevation and latitude have limited equivalence in their capacities to provide climate‐change refuge to migrating species.</description><subject>Altitude</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>body size</subject><subject>Climate change</subject><subject>Climate prediction</subject><subject>conservation biogeography</subject><subject>Dispersion</subject><subject>Divergence</subject><subject>Elevation</subject><subject>elevational diversity gradient</subject><subject>environmental filtering</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Freshwater lakes</subject><subject>functional diversity</subject><subject>Lakes</subject><subject>Latitude</subject><subject>latitudinal diversity gradient</subject><subject>Mountain lakes</subject><subject>phylogenetic diversity</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Range extension</subject><subject>Refuges</subject><subject>Refugia</subject><subject>Species richness</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Trends</subject><subject>Zooplankton</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kE9PwjAYhxujEUQPfgGzxJOHQf-u3ckIKpqQeNFz03XdKIFttgPDt7cwJHqwl_Z9--T3vnkAuEZwiMIZlTobooQyfgL6iCQsxlQkp7s3ozGCiPTAhfcLCCHBMDkHPZKgJGVp2gePY1vndmOct-02alTbGlf5aN8qTaSWdVVGpalLp5q51VFrVo1xql07E4Vebk3V-ktwVqilN1eHewA-np_eJy_x7G36OnmYxZoiymOjBeZa4ZQxlMEkY4YmkIe1NaWCFDglnBdYKKYFZKlAWuQiVYKHghaCIDIA911us85WJtdhtlNL2Ti7Um4ra2Xl35_KzmVZb2RwACHDOCTcHhJc_bk2vpWLeu2qsLTEPAghhGAeqLuO0q723pniOAJBuTMug3G5Nx7Ym987HckfxQEYdcCXXZrt_0lyOhl3kd9JKIpk</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Loewen, Charlie J. G.</creator><creator>Jackson, Donald A.</creator><creator>Gilbert, Benjamin</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4947-6822</orcidid><orcidid>https://orcid.org/0000-0002-4389-4134</orcidid><orcidid>https://orcid.org/0000-0002-6107-0753</orcidid></search><sort><creationdate>202302</creationdate><title>Biodiversity patterns diverge along geographic temperature gradients</title><author>Loewen, Charlie J. G. ; Jackson, Donald A. ; Gilbert, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4147-ec827ca29551b06b5e4607457c4483f29377f28a5c805981c8d89a870594f8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Altitude</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>body size</topic><topic>Climate change</topic><topic>Climate prediction</topic><topic>conservation biogeography</topic><topic>Dispersion</topic><topic>Divergence</topic><topic>Elevation</topic><topic>elevational diversity gradient</topic><topic>environmental filtering</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Freshwater lakes</topic><topic>functional diversity</topic><topic>Lakes</topic><topic>Latitude</topic><topic>latitudinal diversity gradient</topic><topic>Mountain lakes</topic><topic>phylogenetic diversity</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Range extension</topic><topic>Refuges</topic><topic>Refugia</topic><topic>Species richness</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Trends</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loewen, Charlie J. G.</creatorcontrib><creatorcontrib>Jackson, Donald A.</creatorcontrib><creatorcontrib>Gilbert, Benjamin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loewen, Charlie J. G.</au><au>Jackson, Donald A.</au><au>Gilbert, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodiversity patterns diverge along geographic temperature gradients</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2023-02</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>603</spage><epage>617</epage><pages>603-617</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Models applying space‐for‐time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump‐shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation‐ and latitude‐driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion. Integrating historical lake sampling from a series of adjacent mountain ranges in western North America (a) we assessed variation across multiple dimensions of zooplankton biodiversity both within, and between, elevational and latitudinal gradients (b). We discovered contrasting patterns linked to geographic interactions, including weaker latitudinal relationships in high altitude, alpine lakes (c). Diversity trends diverged when contrasting elevational and latitudinal patterns, as did responses to mean temperatures and seasonality. These differences suggest that elevation and latitude have limited equivalence in their capacities to provide climate‐change refuge to migrating species.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36169599</pmid><doi>10.1111/gcb.16457</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4947-6822</orcidid><orcidid>https://orcid.org/0000-0002-4389-4134</orcidid><orcidid>https://orcid.org/0000-0002-6107-0753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2023-02, Vol.29 (3), p.603-617
issn 1354-1013
1365-2486
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100522
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Altitude
Animals
Biodiversity
body size
Climate change
Climate prediction
conservation biogeography
Dispersion
Divergence
Elevation
elevational diversity gradient
environmental filtering
Food Chain
Food chains
Food webs
Freshwater lakes
functional diversity
Lakes
Latitude
latitudinal diversity gradient
Mountain lakes
phylogenetic diversity
Phylogenetics
Phylogeny
Range extension
Refuges
Refugia
Species richness
Temperature
Temperature gradients
Trends
Zooplankton
title Biodiversity patterns diverge along geographic temperature gradients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodiversity%20patterns%20diverge%20along%20geographic%20temperature%20gradients&rft.jtitle=Global%20change%20biology&rft.au=Loewen,%20Charlie%20J.%20G.&rft.date=2023-02&rft.volume=29&rft.issue=3&rft.spage=603&rft.epage=617&rft.pages=603-617&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.16457&rft_dat=%3Cproquest_pubme%3E2759933327%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759933327&rft_id=info:pmid/36169599&rfr_iscdi=true