Bioactive Ion‐Based Switchable Supercapacitors

Switchable supercapacitors (SCs) enable a reversible electrically‐driven uptake/release of bioactive ions by polarizing porous carbon electrodes. Herein we demonstrate the first example of a bioactive ion‐based switchable supercapacitor. Based on choline chloride and porous carbons we unravel the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-12, Vol.61 (50), p.e202212250-n/a
Hauptverfasser: Li, Panlong, Bräuniger, Yannik, Kunigkeit, Jonas, Zhou, Hanfeng, Ortega Vega, Maria Rita, Zhang, En, Grothe, Julia, Brunner, Eike, Kaskel, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e202212250
container_title Angewandte Chemie International Edition
container_volume 61
creator Li, Panlong
Bräuniger, Yannik
Kunigkeit, Jonas
Zhou, Hanfeng
Ortega Vega, Maria Rita
Zhang, En
Grothe, Julia
Brunner, Eike
Kaskel, Stefan
description Switchable supercapacitors (SCs) enable a reversible electrically‐driven uptake/release of bioactive ions by polarizing porous carbon electrodes. Herein we demonstrate the first example of a bioactive ion‐based switchable supercapacitor. Based on choline chloride and porous carbons we unravel the mechanism of physisorption vs. electrosorption by nuclear magnetic resonance, Raman, and impedance spectroscopy. Weak physisorption facilitates electrically‐driven electrolyte depletion enabling the controllable uptake/release of electrolyte ions. A new 4‐terminal device is proposed, with a main capacitor and a detective capacitor for monitoring bioactive ion adsorption in situ. Ion‐concentration control in printed choline‐based switchable SCs realizes switching down to 8.3 % residual capacitance. The exploration of adsorption mechanisms in printable microdevices will open an avenue of manipulating bioactive ions for the application of drug delivery, neuromodulation, or neuromorphic devices. Inspired by the highly efficient information transmission of biologically active compounds in nerve systems, a well‐controllable capture/release of biologically active ions is achieved by a switchable supercapacitor.
doi_str_mv 10.1002/anie.202212250
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746821624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4690-5c9b1e54562a756a26f1a978fdf3c46c51980c595c2f73ed5ea985200e92cc533</originalsourceid><addsrcrecordid>eNqFkbtOAzEQRS0E4t1Sokg0NBvs8dq7rhBBPCIhKIDacpxZMNqsg70LouMT-Ea-BEMgPBoqj-QzRzNzCdlitM8ohT3TOOwDBWAAgi6QVSaAZbwo-GKqc86zohRshazFeJf4sqRymaxwCZJKLlYJHThvbOsesDf0zevzy8BEHPcuH11rb82oxt5lN8VgzdRY1_oQN8hSZeqIm5_vOrk-Pro6PM3OLk6Ghwdnmc2lopmwasRQ5EKCKYQ0ICtmVFFW44onwgqmSmqFEhaqguNYoFGlAEpRgbWC83WyP_NOu9EExxabNphaT4ObmPCkvXH690_jbvWNf9CMpsPkuUiG3U9D8PcdxlZPXLRY16ZB30UNBcicquID3fmD3vkuNGm_ROWyBCYhT1R_RtngYwxYzadhVL-nod_T0PM0UsP2zx3m-Nf5E6BmwKOr8ekfnT44Hx59y98AeG6WJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746821624</pqid></control><display><type>article</type><title>Bioactive Ion‐Based Switchable Supercapacitors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Panlong ; Bräuniger, Yannik ; Kunigkeit, Jonas ; Zhou, Hanfeng ; Ortega Vega, Maria Rita ; Zhang, En ; Grothe, Julia ; Brunner, Eike ; Kaskel, Stefan</creator><creatorcontrib>Li, Panlong ; Bräuniger, Yannik ; Kunigkeit, Jonas ; Zhou, Hanfeng ; Ortega Vega, Maria Rita ; Zhang, En ; Grothe, Julia ; Brunner, Eike ; Kaskel, Stefan</creatorcontrib><description>Switchable supercapacitors (SCs) enable a reversible electrically‐driven uptake/release of bioactive ions by polarizing porous carbon electrodes. Herein we demonstrate the first example of a bioactive ion‐based switchable supercapacitor. Based on choline chloride and porous carbons we unravel the mechanism of physisorption vs. electrosorption by nuclear magnetic resonance, Raman, and impedance spectroscopy. Weak physisorption facilitates electrically‐driven electrolyte depletion enabling the controllable uptake/release of electrolyte ions. A new 4‐terminal device is proposed, with a main capacitor and a detective capacitor for monitoring bioactive ion adsorption in situ. Ion‐concentration control in printed choline‐based switchable SCs realizes switching down to 8.3 % residual capacitance. The exploration of adsorption mechanisms in printable microdevices will open an avenue of manipulating bioactive ions for the application of drug delivery, neuromodulation, or neuromorphic devices. Inspired by the highly efficient information transmission of biologically active compounds in nerve systems, a well‐controllable capture/release of biologically active ions is achieved by a switchable supercapacitor.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202212250</identifier><identifier>PMID: 36260635</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Biological activity ; Capacitance ; Capacitors ; Carbon - chemistry ; Choline ; Controllability ; Depletion ; Drug delivery ; Electric Capacitance ; Electrodes ; Electrolytes ; Electrosorption ; Ion adsorption ; Ions ; Iontronic Architecture ; Neuromodulation ; NMR ; Nuclear magnetic resonance ; Porous Carbon ; Spectroscopy ; Supercapacitors ; Switchable Supercapacitor</subject><ispartof>Angewandte Chemie International Edition, 2022-12, Vol.61 (50), p.e202212250-n/a</ispartof><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4690-5c9b1e54562a756a26f1a978fdf3c46c51980c595c2f73ed5ea985200e92cc533</citedby><cites>FETCH-LOGICAL-c4690-5c9b1e54562a756a26f1a978fdf3c46c51980c595c2f73ed5ea985200e92cc533</cites><orcidid>0000-0002-6049-2831 ; 0000-0003-4572-0303 ; 0000-0001-8871-4849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202212250$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202212250$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36260635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Panlong</creatorcontrib><creatorcontrib>Bräuniger, Yannik</creatorcontrib><creatorcontrib>Kunigkeit, Jonas</creatorcontrib><creatorcontrib>Zhou, Hanfeng</creatorcontrib><creatorcontrib>Ortega Vega, Maria Rita</creatorcontrib><creatorcontrib>Zhang, En</creatorcontrib><creatorcontrib>Grothe, Julia</creatorcontrib><creatorcontrib>Brunner, Eike</creatorcontrib><creatorcontrib>Kaskel, Stefan</creatorcontrib><title>Bioactive Ion‐Based Switchable Supercapacitors</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Switchable supercapacitors (SCs) enable a reversible electrically‐driven uptake/release of bioactive ions by polarizing porous carbon electrodes. Herein we demonstrate the first example of a bioactive ion‐based switchable supercapacitor. Based on choline chloride and porous carbons we unravel the mechanism of physisorption vs. electrosorption by nuclear magnetic resonance, Raman, and impedance spectroscopy. Weak physisorption facilitates electrically‐driven electrolyte depletion enabling the controllable uptake/release of electrolyte ions. A new 4‐terminal device is proposed, with a main capacitor and a detective capacitor for monitoring bioactive ion adsorption in situ. Ion‐concentration control in printed choline‐based switchable SCs realizes switching down to 8.3 % residual capacitance. The exploration of adsorption mechanisms in printable microdevices will open an avenue of manipulating bioactive ions for the application of drug delivery, neuromodulation, or neuromorphic devices. Inspired by the highly efficient information transmission of biologically active compounds in nerve systems, a well‐controllable capture/release of biologically active ions is achieved by a switchable supercapacitor.</description><subject>Adsorption</subject><subject>Biological activity</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Carbon - chemistry</subject><subject>Choline</subject><subject>Controllability</subject><subject>Depletion</subject><subject>Drug delivery</subject><subject>Electric Capacitance</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrosorption</subject><subject>Ion adsorption</subject><subject>Ions</subject><subject>Iontronic Architecture</subject><subject>Neuromodulation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Porous Carbon</subject><subject>Spectroscopy</subject><subject>Supercapacitors</subject><subject>Switchable Supercapacitor</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkbtOAzEQRS0E4t1Sokg0NBvs8dq7rhBBPCIhKIDacpxZMNqsg70LouMT-Ea-BEMgPBoqj-QzRzNzCdlitM8ohT3TOOwDBWAAgi6QVSaAZbwo-GKqc86zohRshazFeJf4sqRymaxwCZJKLlYJHThvbOsesDf0zevzy8BEHPcuH11rb82oxt5lN8VgzdRY1_oQN8hSZeqIm5_vOrk-Pro6PM3OLk6Ghwdnmc2lopmwasRQ5EKCKYQ0ICtmVFFW44onwgqmSmqFEhaqguNYoFGlAEpRgbWC83WyP_NOu9EExxabNphaT4ObmPCkvXH690_jbvWNf9CMpsPkuUiG3U9D8PcdxlZPXLRY16ZB30UNBcicquID3fmD3vkuNGm_ROWyBCYhT1R_RtngYwxYzadhVL-nod_T0PM0UsP2zx3m-Nf5E6BmwKOr8ekfnT44Hx59y98AeG6WJw</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Li, Panlong</creator><creator>Bräuniger, Yannik</creator><creator>Kunigkeit, Jonas</creator><creator>Zhou, Hanfeng</creator><creator>Ortega Vega, Maria Rita</creator><creator>Zhang, En</creator><creator>Grothe, Julia</creator><creator>Brunner, Eike</creator><creator>Kaskel, Stefan</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6049-2831</orcidid><orcidid>https://orcid.org/0000-0003-4572-0303</orcidid><orcidid>https://orcid.org/0000-0001-8871-4849</orcidid></search><sort><creationdate>20221212</creationdate><title>Bioactive Ion‐Based Switchable Supercapacitors</title><author>Li, Panlong ; Bräuniger, Yannik ; Kunigkeit, Jonas ; Zhou, Hanfeng ; Ortega Vega, Maria Rita ; Zhang, En ; Grothe, Julia ; Brunner, Eike ; Kaskel, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4690-5c9b1e54562a756a26f1a978fdf3c46c51980c595c2f73ed5ea985200e92cc533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Biological activity</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Carbon - chemistry</topic><topic>Choline</topic><topic>Controllability</topic><topic>Depletion</topic><topic>Drug delivery</topic><topic>Electric Capacitance</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrosorption</topic><topic>Ion adsorption</topic><topic>Ions</topic><topic>Iontronic Architecture</topic><topic>Neuromodulation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Porous Carbon</topic><topic>Spectroscopy</topic><topic>Supercapacitors</topic><topic>Switchable Supercapacitor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Panlong</creatorcontrib><creatorcontrib>Bräuniger, Yannik</creatorcontrib><creatorcontrib>Kunigkeit, Jonas</creatorcontrib><creatorcontrib>Zhou, Hanfeng</creatorcontrib><creatorcontrib>Ortega Vega, Maria Rita</creatorcontrib><creatorcontrib>Zhang, En</creatorcontrib><creatorcontrib>Grothe, Julia</creatorcontrib><creatorcontrib>Brunner, Eike</creatorcontrib><creatorcontrib>Kaskel, Stefan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Panlong</au><au>Bräuniger, Yannik</au><au>Kunigkeit, Jonas</au><au>Zhou, Hanfeng</au><au>Ortega Vega, Maria Rita</au><au>Zhang, En</au><au>Grothe, Julia</au><au>Brunner, Eike</au><au>Kaskel, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactive Ion‐Based Switchable Supercapacitors</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-12-12</date><risdate>2022</risdate><volume>61</volume><issue>50</issue><spage>e202212250</spage><epage>n/a</epage><pages>e202212250-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Switchable supercapacitors (SCs) enable a reversible electrically‐driven uptake/release of bioactive ions by polarizing porous carbon electrodes. Herein we demonstrate the first example of a bioactive ion‐based switchable supercapacitor. Based on choline chloride and porous carbons we unravel the mechanism of physisorption vs. electrosorption by nuclear magnetic resonance, Raman, and impedance spectroscopy. Weak physisorption facilitates electrically‐driven electrolyte depletion enabling the controllable uptake/release of electrolyte ions. A new 4‐terminal device is proposed, with a main capacitor and a detective capacitor for monitoring bioactive ion adsorption in situ. Ion‐concentration control in printed choline‐based switchable SCs realizes switching down to 8.3 % residual capacitance. The exploration of adsorption mechanisms in printable microdevices will open an avenue of manipulating bioactive ions for the application of drug delivery, neuromodulation, or neuromorphic devices. Inspired by the highly efficient information transmission of biologically active compounds in nerve systems, a well‐controllable capture/release of biologically active ions is achieved by a switchable supercapacitor.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36260635</pmid><doi>10.1002/anie.202212250</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6049-2831</orcidid><orcidid>https://orcid.org/0000-0003-4572-0303</orcidid><orcidid>https://orcid.org/0000-0001-8871-4849</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-12, Vol.61 (50), p.e202212250-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100445
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Biological activity
Capacitance
Capacitors
Carbon - chemistry
Choline
Controllability
Depletion
Drug delivery
Electric Capacitance
Electrodes
Electrolytes
Electrosorption
Ion adsorption
Ions
Iontronic Architecture
Neuromodulation
NMR
Nuclear magnetic resonance
Porous Carbon
Spectroscopy
Supercapacitors
Switchable Supercapacitor
title Bioactive Ion‐Based Switchable Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactive%20Ion%E2%80%90Based%20Switchable%20Supercapacitors&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Panlong&rft.date=2022-12-12&rft.volume=61&rft.issue=50&rft.spage=e202212250&rft.epage=n/a&rft.pages=e202212250-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202212250&rft_dat=%3Cproquest_pubme%3E2746821624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2746821624&rft_id=info:pmid/36260635&rfr_iscdi=true