Crystallization Kinetics Analysis of the Binary Amorphous Mg72Zn28 Alloy

The aim of the study was to analyze the crystallization kinetics of the Mg72Zn28 metallic glass alloy. The crystallization kinetics of Mg72Zn28 metallic glass were investigated by differential scanning calorimetry and X-ray diffraction. The phases formed during the crystallization process were ident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-03, Vol.16 (7), p.2727
Hauptverfasser: Opitek, Bartosz, Gracz, Beata, Lelito, Janusz, Krajewski, Witold K., Łucarz, Mariusz, Bała, Piotr, Kozieł, Tomasz, Gondek, Łukasz, Szucki, Michał
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2727
container_title Materials
container_volume 16
creator Opitek, Bartosz
Gracz, Beata
Lelito, Janusz
Krajewski, Witold K.
Łucarz, Mariusz
Bała, Piotr
Kozieł, Tomasz
Gondek, Łukasz
Szucki, Michał
description The aim of the study was to analyze the crystallization kinetics of the Mg72Zn28 metallic glass alloy. The crystallization kinetics of Mg72Zn28 metallic glass were investigated by differential scanning calorimetry and X-ray diffraction. The phases formed during the crystallization process were identified as α-Mg and complex Mg12Zn13 phases. Activation energies for the glass transition temperature, crystallization onset, and peak were calculated based on the Kissinger model. The activation energy calculated from the Kissinger model was Eg = 176.91, Ex = 124.26, Ep1 = 117.49, and Ep2 = 114.48 kJ mol−1, respectively.
doi_str_mv 10.3390/ma16072727
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10095614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799648553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a9488fabe840c09bdd1bd1ece30a1fc7e0295a875f3df8852cadfc75a6b038d03</originalsourceid><addsrcrecordid>eNpdkUtLAzEQx4MoWGovfoKAFxGqeewjOcla1IoVL3rxErLZbJuS3dRkV1g_vSktvmYOM8z8-DMPAE4xuqSUo6tG4gzlJPoBGGHOsynmSXL4Kz8GkxDWKBqlmBE-AvOZH0InrTWfsjOuhY-m1Z1RARattEMwAboadisNb0wr_QCLxvnNyvUBPi1z8tYSBgtr3XACjmppg57s4xi83t2-zObTxfP9w6xYTBVlSTeVPGGslqVmCVKIl1WFywprpSmSuFa5RoSnkuVpTauasZQoWcVyKrMSUVYhOgbXO91NXza6UrrtvLRi400TxxNOGvG305qVWLoPgRHiaYaTqHC-V_DuvdehE40JSlsrWx33EoQhlBHMyRY9-4euXe_jYSKVx6MmLE1ppC52lPIuBK_r72kwEtvPiJ_P0C8zPIEd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799648553</pqid></control><display><type>article</type><title>Crystallization Kinetics Analysis of the Binary Amorphous Mg72Zn28 Alloy</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Opitek, Bartosz ; Gracz, Beata ; Lelito, Janusz ; Krajewski, Witold K. ; Łucarz, Mariusz ; Bała, Piotr ; Kozieł, Tomasz ; Gondek, Łukasz ; Szucki, Michał</creator><creatorcontrib>Opitek, Bartosz ; Gracz, Beata ; Lelito, Janusz ; Krajewski, Witold K. ; Łucarz, Mariusz ; Bała, Piotr ; Kozieł, Tomasz ; Gondek, Łukasz ; Szucki, Michał</creatorcontrib><description>The aim of the study was to analyze the crystallization kinetics of the Mg72Zn28 metallic glass alloy. The crystallization kinetics of Mg72Zn28 metallic glass were investigated by differential scanning calorimetry and X-ray diffraction. The phases formed during the crystallization process were identified as α-Mg and complex Mg12Zn13 phases. Activation energies for the glass transition temperature, crystallization onset, and peak were calculated based on the Kissinger model. The activation energy calculated from the Kissinger model was Eg = 176.91, Ex = 124.26, Ep1 = 117.49, and Ep2 = 114.48 kJ mol−1, respectively.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16072727</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activation energy ; Amorphous alloys ; Amorphous materials ; Binary alloys ; Biodegradable materials ; Corrosion resistance ; Crystallization ; Energy ; Glass transition temperature ; Kinetics ; Magnesium alloys ; Mathematical models ; Mechanical properties ; Metallic glasses ; Temperature</subject><ispartof>Materials, 2023-03, Vol.16 (7), p.2727</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a9488fabe840c09bdd1bd1ece30a1fc7e0295a875f3df8852cadfc75a6b038d03</citedby><cites>FETCH-LOGICAL-c384t-a9488fabe840c09bdd1bd1ece30a1fc7e0295a875f3df8852cadfc75a6b038d03</cites><orcidid>0000-0002-5527-4127 ; 0000-0002-9896-6350 ; 0000-0002-4149-7944 ; 0000-0001-9007-7690 ; 0000-0002-1196-6295 ; 0000-0002-2675-1836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Opitek, Bartosz</creatorcontrib><creatorcontrib>Gracz, Beata</creatorcontrib><creatorcontrib>Lelito, Janusz</creatorcontrib><creatorcontrib>Krajewski, Witold K.</creatorcontrib><creatorcontrib>Łucarz, Mariusz</creatorcontrib><creatorcontrib>Bała, Piotr</creatorcontrib><creatorcontrib>Kozieł, Tomasz</creatorcontrib><creatorcontrib>Gondek, Łukasz</creatorcontrib><creatorcontrib>Szucki, Michał</creatorcontrib><title>Crystallization Kinetics Analysis of the Binary Amorphous Mg72Zn28 Alloy</title><title>Materials</title><description>The aim of the study was to analyze the crystallization kinetics of the Mg72Zn28 metallic glass alloy. The crystallization kinetics of Mg72Zn28 metallic glass were investigated by differential scanning calorimetry and X-ray diffraction. The phases formed during the crystallization process were identified as α-Mg and complex Mg12Zn13 phases. Activation energies for the glass transition temperature, crystallization onset, and peak were calculated based on the Kissinger model. The activation energy calculated from the Kissinger model was Eg = 176.91, Ex = 124.26, Ep1 = 117.49, and Ep2 = 114.48 kJ mol−1, respectively.</description><subject>Activation energy</subject><subject>Amorphous alloys</subject><subject>Amorphous materials</subject><subject>Binary alloys</subject><subject>Biodegradable materials</subject><subject>Corrosion resistance</subject><subject>Crystallization</subject><subject>Energy</subject><subject>Glass transition temperature</subject><subject>Kinetics</subject><subject>Magnesium alloys</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Metallic glasses</subject><subject>Temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLAzEQx4MoWGovfoKAFxGqeewjOcla1IoVL3rxErLZbJuS3dRkV1g_vSktvmYOM8z8-DMPAE4xuqSUo6tG4gzlJPoBGGHOsynmSXL4Kz8GkxDWKBqlmBE-AvOZH0InrTWfsjOuhY-m1Z1RARattEMwAboadisNb0wr_QCLxvnNyvUBPi1z8tYSBgtr3XACjmppg57s4xi83t2-zObTxfP9w6xYTBVlSTeVPGGslqVmCVKIl1WFywprpSmSuFa5RoSnkuVpTauasZQoWcVyKrMSUVYhOgbXO91NXza6UrrtvLRi400TxxNOGvG305qVWLoPgRHiaYaTqHC-V_DuvdehE40JSlsrWx33EoQhlBHMyRY9-4euXe_jYSKVx6MmLE1ppC52lPIuBK_r72kwEtvPiJ_P0C8zPIEd</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Opitek, Bartosz</creator><creator>Gracz, Beata</creator><creator>Lelito, Janusz</creator><creator>Krajewski, Witold K.</creator><creator>Łucarz, Mariusz</creator><creator>Bała, Piotr</creator><creator>Kozieł, Tomasz</creator><creator>Gondek, Łukasz</creator><creator>Szucki, Michał</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5527-4127</orcidid><orcidid>https://orcid.org/0000-0002-9896-6350</orcidid><orcidid>https://orcid.org/0000-0002-4149-7944</orcidid><orcidid>https://orcid.org/0000-0001-9007-7690</orcidid><orcidid>https://orcid.org/0000-0002-1196-6295</orcidid><orcidid>https://orcid.org/0000-0002-2675-1836</orcidid></search><sort><creationdate>20230329</creationdate><title>Crystallization Kinetics Analysis of the Binary Amorphous Mg72Zn28 Alloy</title><author>Opitek, Bartosz ; Gracz, Beata ; Lelito, Janusz ; Krajewski, Witold K. ; Łucarz, Mariusz ; Bała, Piotr ; Kozieł, Tomasz ; Gondek, Łukasz ; Szucki, Michał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a9488fabe840c09bdd1bd1ece30a1fc7e0295a875f3df8852cadfc75a6b038d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activation energy</topic><topic>Amorphous alloys</topic><topic>Amorphous materials</topic><topic>Binary alloys</topic><topic>Biodegradable materials</topic><topic>Corrosion resistance</topic><topic>Crystallization</topic><topic>Energy</topic><topic>Glass transition temperature</topic><topic>Kinetics</topic><topic>Magnesium alloys</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Metallic glasses</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opitek, Bartosz</creatorcontrib><creatorcontrib>Gracz, Beata</creatorcontrib><creatorcontrib>Lelito, Janusz</creatorcontrib><creatorcontrib>Krajewski, Witold K.</creatorcontrib><creatorcontrib>Łucarz, Mariusz</creatorcontrib><creatorcontrib>Bała, Piotr</creatorcontrib><creatorcontrib>Kozieł, Tomasz</creatorcontrib><creatorcontrib>Gondek, Łukasz</creatorcontrib><creatorcontrib>Szucki, Michał</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opitek, Bartosz</au><au>Gracz, Beata</au><au>Lelito, Janusz</au><au>Krajewski, Witold K.</au><au>Łucarz, Mariusz</au><au>Bała, Piotr</au><au>Kozieł, Tomasz</au><au>Gondek, Łukasz</au><au>Szucki, Michał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization Kinetics Analysis of the Binary Amorphous Mg72Zn28 Alloy</atitle><jtitle>Materials</jtitle><date>2023-03-29</date><risdate>2023</risdate><volume>16</volume><issue>7</issue><spage>2727</spage><pages>2727-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The aim of the study was to analyze the crystallization kinetics of the Mg72Zn28 metallic glass alloy. The crystallization kinetics of Mg72Zn28 metallic glass were investigated by differential scanning calorimetry and X-ray diffraction. The phases formed during the crystallization process were identified as α-Mg and complex Mg12Zn13 phases. Activation energies for the glass transition temperature, crystallization onset, and peak were calculated based on the Kissinger model. The activation energy calculated from the Kissinger model was Eg = 176.91, Ex = 124.26, Ep1 = 117.49, and Ep2 = 114.48 kJ mol−1, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma16072727</doi><orcidid>https://orcid.org/0000-0002-5527-4127</orcidid><orcidid>https://orcid.org/0000-0002-9896-6350</orcidid><orcidid>https://orcid.org/0000-0002-4149-7944</orcidid><orcidid>https://orcid.org/0000-0001-9007-7690</orcidid><orcidid>https://orcid.org/0000-0002-1196-6295</orcidid><orcidid>https://orcid.org/0000-0002-2675-1836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-03, Vol.16 (7), p.2727
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10095614
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Activation energy
Amorphous alloys
Amorphous materials
Binary alloys
Biodegradable materials
Corrosion resistance
Crystallization
Energy
Glass transition temperature
Kinetics
Magnesium alloys
Mathematical models
Mechanical properties
Metallic glasses
Temperature
title Crystallization Kinetics Analysis of the Binary Amorphous Mg72Zn28 Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20Kinetics%20Analysis%20of%20the%20Binary%20Amorphous%20Mg72Zn28%20Alloy&rft.jtitle=Materials&rft.au=Opitek,%20Bartosz&rft.date=2023-03-29&rft.volume=16&rft.issue=7&rft.spage=2727&rft.pages=2727-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16072727&rft_dat=%3Cproquest_pubme%3E2799648553%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799648553&rft_id=info:pmid/&rfr_iscdi=true