Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients

This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2023-04, Vol.15 (7), p.2174
Hauptverfasser: Diaz-Ramón, Jose Luis, Gardeazabal, Jesus, Izu, Rosa Maria, Garrote, Estibaliz, Rasero, Javier, Apraiz, Aintzane, Penas, Cristina, Seijo, Sandra, Lopez-Saratxaga, Cristina, De la Peña, Pedro Maria, Sanchez-Diaz, Ana, Cancho-Galan, Goikoane, Velasco, Veronica, Sevilla, Arrate, Fernandez, David, Cuenca, Iciar, Cortes, Jesus María, Alonso, Santos, Asumendi, Aintzane, Boyano, María Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2174
container_title Cancers
container_volume 15
creator Diaz-Ramón, Jose Luis
Gardeazabal, Jesus
Izu, Rosa Maria
Garrote, Estibaliz
Rasero, Javier
Apraiz, Aintzane
Penas, Cristina
Seijo, Sandra
Lopez-Saratxaga, Cristina
De la Peña, Pedro Maria
Sanchez-Diaz, Ana
Cancho-Galan, Goikoane
Velasco, Veronica
Sevilla, Arrate
Fernandez, David
Cuenca, Iciar
Cortes, Jesus María
Alonso, Santos
Asumendi, Aintzane
Boyano, María Dolores
description This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.
doi_str_mv 10.3390/cancers15072174
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10093614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746926364</galeid><sourcerecordid>A746926364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-844c563ba9f898eb7ab576c873638aef8e5e90c277627bffb69c4ab838418b5d3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpmRuyxIVLWjtO_MEFbbcFKhW10paz5TiTxZVjL7aDtD-Ff4tXLUtbYR88Gj_zzoemqt4SfEKpxKdGewMxkQ7zhvD2RXXYFKtmTLYvH9kH1XFKd7gcSgln_HV1QDlumaDdYfX7Gzjtw6TR0llvjXboHIxNNni0mjebEDNabVOG6SNaeLSI2Y7W2IJd-gzO2TWUIuoznWBAtyE4lAM6t3rtQwKk_YBuIgzW5OJMUCh0PWcTJkDWowsd3bZeZb0GtK_jRmcLPqc31atRuwTHD-9R9f3zxe3ya311_eVyubiqTStkrkXbmo7RXstRSAE9133HmRGcMio0jAI6kNg0nLOG9-PYM2la3QsqWiL6bqBH1ad73c3cTzCYkjtqpzbRTjpuVdBWPf3x9odah1-KYCwpI21R-PCgEMPPGVJWk02mDEd7CHNSjcCYNbKRXUHfP0Pvwhx96U81XMquY5yQf9RaO1DWj6EkNjtRteAtkw2jbJf25D9UuQNM1gQPoy3-JwGn9wEmhpQijPsmCVa7jVLPNqpEvHs8mz3_d3_oH7ULyMM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799556711</pqid></control><display><type>article</type><title>Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Diaz-Ramón, Jose Luis ; Gardeazabal, Jesus ; Izu, Rosa Maria ; Garrote, Estibaliz ; Rasero, Javier ; Apraiz, Aintzane ; Penas, Cristina ; Seijo, Sandra ; Lopez-Saratxaga, Cristina ; De la Peña, Pedro Maria ; Sanchez-Diaz, Ana ; Cancho-Galan, Goikoane ; Velasco, Veronica ; Sevilla, Arrate ; Fernandez, David ; Cuenca, Iciar ; Cortes, Jesus María ; Alonso, Santos ; Asumendi, Aintzane ; Boyano, María Dolores</creator><creatorcontrib>Diaz-Ramón, Jose Luis ; Gardeazabal, Jesus ; Izu, Rosa Maria ; Garrote, Estibaliz ; Rasero, Javier ; Apraiz, Aintzane ; Penas, Cristina ; Seijo, Sandra ; Lopez-Saratxaga, Cristina ; De la Peña, Pedro Maria ; Sanchez-Diaz, Ana ; Cancho-Galan, Goikoane ; Velasco, Veronica ; Sevilla, Arrate ; Fernandez, David ; Cuenca, Iciar ; Cortes, Jesus María ; Alonso, Santos ; Asumendi, Aintzane ; Boyano, María Dolores</creatorcontrib><description>This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15072174</identifier><identifier>PMID: 37046835</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Bcl-2 protein ; Biomarkers ; Biopsy ; Care and treatment ; Clinical decision making ; Colony-stimulating factor ; Cytokines ; Decision support systems ; Deep learning ; Dermatology ; Diagnosis ; Disease prevention ; Granulocyte-macrophage colony-stimulating factor ; Health aspects ; Image processing ; Immunohistochemistry ; Interleukin 10 ; Interleukin 4 ; Interleukin 6 ; Lymphocytes ; Medical prognosis ; Melanoma ; Metastases ; Metastasis ; Patient outcomes ; Patients ; Prognosis ; Serology ; Serum levels ; Skin cancer ; Skin diseases ; Skin lesions ; Surgery ; γ-Interferon</subject><ispartof>Cancers, 2023-04, Vol.15 (7), p.2174</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-844c563ba9f898eb7ab576c873638aef8e5e90c277627bffb69c4ab838418b5d3</citedby><cites>FETCH-LOGICAL-c489t-844c563ba9f898eb7ab576c873638aef8e5e90c277627bffb69c4ab838418b5d3</cites><orcidid>0000-0003-0221-4048 ; 0000-0002-9059-8194 ; 0000-0001-6051-1054 ; 0000-0002-2156-2323 ; 0000-0003-4659-6770 ; 0000-0003-1661-2856 ; 0000-0003-1429-7936 ; 0000-0001-6159-6395 ; 0000-0002-4860-3359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37046835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diaz-Ramón, Jose Luis</creatorcontrib><creatorcontrib>Gardeazabal, Jesus</creatorcontrib><creatorcontrib>Izu, Rosa Maria</creatorcontrib><creatorcontrib>Garrote, Estibaliz</creatorcontrib><creatorcontrib>Rasero, Javier</creatorcontrib><creatorcontrib>Apraiz, Aintzane</creatorcontrib><creatorcontrib>Penas, Cristina</creatorcontrib><creatorcontrib>Seijo, Sandra</creatorcontrib><creatorcontrib>Lopez-Saratxaga, Cristina</creatorcontrib><creatorcontrib>De la Peña, Pedro Maria</creatorcontrib><creatorcontrib>Sanchez-Diaz, Ana</creatorcontrib><creatorcontrib>Cancho-Galan, Goikoane</creatorcontrib><creatorcontrib>Velasco, Veronica</creatorcontrib><creatorcontrib>Sevilla, Arrate</creatorcontrib><creatorcontrib>Fernandez, David</creatorcontrib><creatorcontrib>Cuenca, Iciar</creatorcontrib><creatorcontrib>Cortes, Jesus María</creatorcontrib><creatorcontrib>Alonso, Santos</creatorcontrib><creatorcontrib>Asumendi, Aintzane</creatorcontrib><creatorcontrib>Boyano, María Dolores</creatorcontrib><title>Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bcl-2 protein</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Care and treatment</subject><subject>Clinical decision making</subject><subject>Colony-stimulating factor</subject><subject>Cytokines</subject><subject>Decision support systems</subject><subject>Deep learning</subject><subject>Dermatology</subject><subject>Diagnosis</subject><subject>Disease prevention</subject><subject>Granulocyte-macrophage colony-stimulating factor</subject><subject>Health aspects</subject><subject>Image processing</subject><subject>Immunohistochemistry</subject><subject>Interleukin 10</subject><subject>Interleukin 4</subject><subject>Interleukin 6</subject><subject>Lymphocytes</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Serology</subject><subject>Serum levels</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin lesions</subject><subject>Surgery</subject><subject>γ-Interferon</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1v1DAQhiMEolXpmRuyxIVLWjtO_MEFbbcFKhW10paz5TiTxZVjL7aDtD-Ff4tXLUtbYR88Gj_zzoemqt4SfEKpxKdGewMxkQ7zhvD2RXXYFKtmTLYvH9kH1XFKd7gcSgln_HV1QDlumaDdYfX7Gzjtw6TR0llvjXboHIxNNni0mjebEDNabVOG6SNaeLSI2Y7W2IJd-gzO2TWUIuoznWBAtyE4lAM6t3rtQwKk_YBuIgzW5OJMUCh0PWcTJkDWowsd3bZeZb0GtK_jRmcLPqc31atRuwTHD-9R9f3zxe3ya311_eVyubiqTStkrkXbmo7RXstRSAE9133HmRGcMio0jAI6kNg0nLOG9-PYM2la3QsqWiL6bqBH1ad73c3cTzCYkjtqpzbRTjpuVdBWPf3x9odah1-KYCwpI21R-PCgEMPPGVJWk02mDEd7CHNSjcCYNbKRXUHfP0Pvwhx96U81XMquY5yQf9RaO1DWj6EkNjtRteAtkw2jbJf25D9UuQNM1gQPoy3-JwGn9wEmhpQijPsmCVa7jVLPNqpEvHs8mz3_d3_oH7ULyMM</recordid><startdate>20230406</startdate><enddate>20230406</enddate><creator>Diaz-Ramón, Jose Luis</creator><creator>Gardeazabal, Jesus</creator><creator>Izu, Rosa Maria</creator><creator>Garrote, Estibaliz</creator><creator>Rasero, Javier</creator><creator>Apraiz, Aintzane</creator><creator>Penas, Cristina</creator><creator>Seijo, Sandra</creator><creator>Lopez-Saratxaga, Cristina</creator><creator>De la Peña, Pedro Maria</creator><creator>Sanchez-Diaz, Ana</creator><creator>Cancho-Galan, Goikoane</creator><creator>Velasco, Veronica</creator><creator>Sevilla, Arrate</creator><creator>Fernandez, David</creator><creator>Cuenca, Iciar</creator><creator>Cortes, Jesus María</creator><creator>Alonso, Santos</creator><creator>Asumendi, Aintzane</creator><creator>Boyano, María Dolores</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0221-4048</orcidid><orcidid>https://orcid.org/0000-0002-9059-8194</orcidid><orcidid>https://orcid.org/0000-0001-6051-1054</orcidid><orcidid>https://orcid.org/0000-0002-2156-2323</orcidid><orcidid>https://orcid.org/0000-0003-4659-6770</orcidid><orcidid>https://orcid.org/0000-0003-1661-2856</orcidid><orcidid>https://orcid.org/0000-0003-1429-7936</orcidid><orcidid>https://orcid.org/0000-0001-6159-6395</orcidid><orcidid>https://orcid.org/0000-0002-4860-3359</orcidid></search><sort><creationdate>20230406</creationdate><title>Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients</title><author>Diaz-Ramón, Jose Luis ; Gardeazabal, Jesus ; Izu, Rosa Maria ; Garrote, Estibaliz ; Rasero, Javier ; Apraiz, Aintzane ; Penas, Cristina ; Seijo, Sandra ; Lopez-Saratxaga, Cristina ; De la Peña, Pedro Maria ; Sanchez-Diaz, Ana ; Cancho-Galan, Goikoane ; Velasco, Veronica ; Sevilla, Arrate ; Fernandez, David ; Cuenca, Iciar ; Cortes, Jesus María ; Alonso, Santos ; Asumendi, Aintzane ; Boyano, María Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-844c563ba9f898eb7ab576c873638aef8e5e90c277627bffb69c4ab838418b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bcl-2 protein</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Care and treatment</topic><topic>Clinical decision making</topic><topic>Colony-stimulating factor</topic><topic>Cytokines</topic><topic>Decision support systems</topic><topic>Deep learning</topic><topic>Dermatology</topic><topic>Diagnosis</topic><topic>Disease prevention</topic><topic>Granulocyte-macrophage colony-stimulating factor</topic><topic>Health aspects</topic><topic>Image processing</topic><topic>Immunohistochemistry</topic><topic>Interleukin 10</topic><topic>Interleukin 4</topic><topic>Interleukin 6</topic><topic>Lymphocytes</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Serology</topic><topic>Serum levels</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin lesions</topic><topic>Surgery</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz-Ramón, Jose Luis</creatorcontrib><creatorcontrib>Gardeazabal, Jesus</creatorcontrib><creatorcontrib>Izu, Rosa Maria</creatorcontrib><creatorcontrib>Garrote, Estibaliz</creatorcontrib><creatorcontrib>Rasero, Javier</creatorcontrib><creatorcontrib>Apraiz, Aintzane</creatorcontrib><creatorcontrib>Penas, Cristina</creatorcontrib><creatorcontrib>Seijo, Sandra</creatorcontrib><creatorcontrib>Lopez-Saratxaga, Cristina</creatorcontrib><creatorcontrib>De la Peña, Pedro Maria</creatorcontrib><creatorcontrib>Sanchez-Diaz, Ana</creatorcontrib><creatorcontrib>Cancho-Galan, Goikoane</creatorcontrib><creatorcontrib>Velasco, Veronica</creatorcontrib><creatorcontrib>Sevilla, Arrate</creatorcontrib><creatorcontrib>Fernandez, David</creatorcontrib><creatorcontrib>Cuenca, Iciar</creatorcontrib><creatorcontrib>Cortes, Jesus María</creatorcontrib><creatorcontrib>Alonso, Santos</creatorcontrib><creatorcontrib>Asumendi, Aintzane</creatorcontrib><creatorcontrib>Boyano, María Dolores</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz-Ramón, Jose Luis</au><au>Gardeazabal, Jesus</au><au>Izu, Rosa Maria</au><au>Garrote, Estibaliz</au><au>Rasero, Javier</au><au>Apraiz, Aintzane</au><au>Penas, Cristina</au><au>Seijo, Sandra</au><au>Lopez-Saratxaga, Cristina</au><au>De la Peña, Pedro Maria</au><au>Sanchez-Diaz, Ana</au><au>Cancho-Galan, Goikoane</au><au>Velasco, Veronica</au><au>Sevilla, Arrate</au><au>Fernandez, David</au><au>Cuenca, Iciar</au><au>Cortes, Jesus María</au><au>Alonso, Santos</au><au>Asumendi, Aintzane</au><au>Boyano, María Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-04-06</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>2174</spage><pages>2174-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37046835</pmid><doi>10.3390/cancers15072174</doi><orcidid>https://orcid.org/0000-0003-0221-4048</orcidid><orcidid>https://orcid.org/0000-0002-9059-8194</orcidid><orcidid>https://orcid.org/0000-0001-6051-1054</orcidid><orcidid>https://orcid.org/0000-0002-2156-2323</orcidid><orcidid>https://orcid.org/0000-0003-4659-6770</orcidid><orcidid>https://orcid.org/0000-0003-1661-2856</orcidid><orcidid>https://orcid.org/0000-0003-1429-7936</orcidid><orcidid>https://orcid.org/0000-0001-6159-6395</orcidid><orcidid>https://orcid.org/0000-0002-4860-3359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2023-04, Vol.15 (7), p.2174
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10093614
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Artificial intelligence
Bcl-2 protein
Biomarkers
Biopsy
Care and treatment
Clinical decision making
Colony-stimulating factor
Cytokines
Decision support systems
Deep learning
Dermatology
Diagnosis
Disease prevention
Granulocyte-macrophage colony-stimulating factor
Health aspects
Image processing
Immunohistochemistry
Interleukin 10
Interleukin 4
Interleukin 6
Lymphocytes
Medical prognosis
Melanoma
Metastases
Metastasis
Patient outcomes
Patients
Prognosis
Serology
Serum levels
Skin cancer
Skin diseases
Skin lesions
Surgery
γ-Interferon
title Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melanoma%20Clinical%20Decision%20Support%20System:%20An%20Artificial%20Intelligence-Based%20Tool%20to%20Diagnose%20and%20Predict%20Disease%20Outcome%20in%20Early-Stage%20Melanoma%20Patients&rft.jtitle=Cancers&rft.au=Diaz-Ram%C3%B3n,%20Jose%20Luis&rft.date=2023-04-06&rft.volume=15&rft.issue=7&rft.spage=2174&rft.pages=2174-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15072174&rft_dat=%3Cgale_pubme%3EA746926364%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799556711&rft_id=info:pmid/37046835&rft_galeid=A746926364&rfr_iscdi=true