A Comparison between the Online Prognostic Tool PREDICT and myBeST for Women with Breast Cancer in Malaysia

The PREDICT breast cancer is a well-known online calculator to estimate survival probability. We developed a new prognostic model, myBeST, due to the PREDICT tool's limitations when applied to our patients. This study aims to compare the performance of the two models for women with breast cance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2023-03, Vol.15 (7), p.2064
Hauptverfasser: Nik Ab Kadir, Mohd Nasrullah, Mohd Hairon, Suhaily, Ab Hadi, Imi Sairi, Yusof, Siti Norbayah, Muhamat, Siti Maryam, Yaacob, Najib Majdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2064
container_title Cancers
container_volume 15
creator Nik Ab Kadir, Mohd Nasrullah
Mohd Hairon, Suhaily
Ab Hadi, Imi Sairi
Yusof, Siti Norbayah
Muhamat, Siti Maryam
Yaacob, Najib Majdi
description The PREDICT breast cancer is a well-known online calculator to estimate survival probability. We developed a new prognostic model, myBeST, due to the PREDICT tool's limitations when applied to our patients. This study aims to compare the performance of the two models for women with breast cancer in Malaysia. A total of 532 stage I to III patient records who underwent surgical treatment were analysed. They were diagnosed between 2012 and 2016 in seven centres. We obtained baseline predictors and survival outcomes by reviewing patients' medical records. We compare PREDICT and myBeST tools' discriminant performance using receiver-operating characteristic (ROC) analysis. The five-year observed survival was 80.3% (95% CI: 77.0, 83.7). For this cohort, the median five-year survival probabilities estimated by PREDICT and myBeST were 85.8% and 82.6%, respectively. The area under the ROC curve for five-year survival by myBeST was 0.78 (95% CI: 0.73, 0.82) and for PREDICT was 0.75 (95% CI: 0.70, 0.80). Both tools show good performance, with myBeST marginally outperforms PREDICT discriminant performance. Thus, the new prognostic model is perhaps more suitable for women with breast cancer in Malaysia.
doi_str_mv 10.3390/cancers15072064
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10093426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746926156</galeid><sourcerecordid>A746926156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9ee308bed5e84491064b665f3b79d3ec635f9c6b51b3c66255e944ffcadac6db3</originalsourceid><addsrcrecordid>eNptUs9vFCEYJUZjm9qzN0Pixcu2MPyY4WS2Y9UmNW10jUfCMB-71BnYwqzN_veytta2ERL4Au-9j0ceQq8pOWJMkWNrgoWUqSB1RSR_hvarUs2kVPz5g3oPHeZ8RcpgjNayfon2WE24rCuxj37OcRvHtUk-x4A7mG4AAp5WgC_C4APgyxSXIebJW7yIccCXX08_nLULbEKPx-0JfFtgFxP-EcfCu_HTCp8kMHnC7Z_XYR_wFzOYbfbmFXrhzJDh8G4_QN8_ni7az7Pzi09n7fx8Zjln00wBMNJ00AtoOFe0WOukFI51teoZWMmEU1Z2gnbMSlkJAYpz56zpjZV9xw7Q-1vd9aYbobcQpmQGvU5-NGmro_H68U3wK72MvzQlRDFeyaLw7k4hxesN5EmPPlsYBhMgbrKuGkJkWRpaoG-fQK_iJoXiT1e1UkKKhpN_qKUZQPvgYmlsd6J6XnOpKknFru3Rf1Bl9jB6GwM4X84fEY5vCTbFnBO4e5OU6F1G9JOMFMabh39zj_-bCPYbD1y3MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799565840</pqid></control><display><type>article</type><title>A Comparison between the Online Prognostic Tool PREDICT and myBeST for Women with Breast Cancer in Malaysia</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Nik Ab Kadir, Mohd Nasrullah ; Mohd Hairon, Suhaily ; Ab Hadi, Imi Sairi ; Yusof, Siti Norbayah ; Muhamat, Siti Maryam ; Yaacob, Najib Majdi</creator><creatorcontrib>Nik Ab Kadir, Mohd Nasrullah ; Mohd Hairon, Suhaily ; Ab Hadi, Imi Sairi ; Yusof, Siti Norbayah ; Muhamat, Siti Maryam ; Yaacob, Najib Majdi</creatorcontrib><description>The PREDICT breast cancer is a well-known online calculator to estimate survival probability. We developed a new prognostic model, myBeST, due to the PREDICT tool's limitations when applied to our patients. This study aims to compare the performance of the two models for women with breast cancer in Malaysia. A total of 532 stage I to III patient records who underwent surgical treatment were analysed. They were diagnosed between 2012 and 2016 in seven centres. We obtained baseline predictors and survival outcomes by reviewing patients' medical records. We compare PREDICT and myBeST tools' discriminant performance using receiver-operating characteristic (ROC) analysis. The five-year observed survival was 80.3% (95% CI: 77.0, 83.7). For this cohort, the median five-year survival probabilities estimated by PREDICT and myBeST were 85.8% and 82.6%, respectively. The area under the ROC curve for five-year survival by myBeST was 0.78 (95% CI: 0.73, 0.82) and for PREDICT was 0.75 (95% CI: 0.70, 0.80). Both tools show good performance, with myBeST marginally outperforms PREDICT discriminant performance. Thus, the new prognostic model is perhaps more suitable for women with breast cancer in Malaysia.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15072064</identifier><identifier>PMID: 37046725</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Breast cancer ; Cancer therapies ; Chemotherapy ; Committees ; Ethics ; Lymphatic system ; Medical records ; Minority &amp; ethnic groups ; Mortality ; Patients ; Probability ; Prognosis ; Radiation therapy ; Survival ; Validation studies ; Web services ; Womens health</subject><ispartof>Cancers, 2023-03, Vol.15 (7), p.2064</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c443t-9ee308bed5e84491064b665f3b79d3ec635f9c6b51b3c66255e944ffcadac6db3</cites><orcidid>0000-0002-6860-1430 ; 0000-0002-4934-0001 ; 0000-0001-7920-9912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093426/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093426/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37046725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nik Ab Kadir, Mohd Nasrullah</creatorcontrib><creatorcontrib>Mohd Hairon, Suhaily</creatorcontrib><creatorcontrib>Ab Hadi, Imi Sairi</creatorcontrib><creatorcontrib>Yusof, Siti Norbayah</creatorcontrib><creatorcontrib>Muhamat, Siti Maryam</creatorcontrib><creatorcontrib>Yaacob, Najib Majdi</creatorcontrib><title>A Comparison between the Online Prognostic Tool PREDICT and myBeST for Women with Breast Cancer in Malaysia</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>The PREDICT breast cancer is a well-known online calculator to estimate survival probability. We developed a new prognostic model, myBeST, due to the PREDICT tool's limitations when applied to our patients. This study aims to compare the performance of the two models for women with breast cancer in Malaysia. A total of 532 stage I to III patient records who underwent surgical treatment were analysed. They were diagnosed between 2012 and 2016 in seven centres. We obtained baseline predictors and survival outcomes by reviewing patients' medical records. We compare PREDICT and myBeST tools' discriminant performance using receiver-operating characteristic (ROC) analysis. The five-year observed survival was 80.3% (95% CI: 77.0, 83.7). For this cohort, the median five-year survival probabilities estimated by PREDICT and myBeST were 85.8% and 82.6%, respectively. The area under the ROC curve for five-year survival by myBeST was 0.78 (95% CI: 0.73, 0.82) and for PREDICT was 0.75 (95% CI: 0.70, 0.80). Both tools show good performance, with myBeST marginally outperforms PREDICT discriminant performance. Thus, the new prognostic model is perhaps more suitable for women with breast cancer in Malaysia.</description><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Committees</subject><subject>Ethics</subject><subject>Lymphatic system</subject><subject>Medical records</subject><subject>Minority &amp; ethnic groups</subject><subject>Mortality</subject><subject>Patients</subject><subject>Probability</subject><subject>Prognosis</subject><subject>Radiation therapy</subject><subject>Survival</subject><subject>Validation studies</subject><subject>Web services</subject><subject>Womens health</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptUs9vFCEYJUZjm9qzN0Pixcu2MPyY4WS2Y9UmNW10jUfCMB-71BnYwqzN_veytta2ERL4Au-9j0ceQq8pOWJMkWNrgoWUqSB1RSR_hvarUs2kVPz5g3oPHeZ8RcpgjNayfon2WE24rCuxj37OcRvHtUk-x4A7mG4AAp5WgC_C4APgyxSXIebJW7yIccCXX08_nLULbEKPx-0JfFtgFxP-EcfCu_HTCp8kMHnC7Z_XYR_wFzOYbfbmFXrhzJDh8G4_QN8_ni7az7Pzi09n7fx8Zjln00wBMNJ00AtoOFe0WOukFI51teoZWMmEU1Z2gnbMSlkJAYpz56zpjZV9xw7Q-1vd9aYbobcQpmQGvU5-NGmro_H68U3wK72MvzQlRDFeyaLw7k4hxesN5EmPPlsYBhMgbrKuGkJkWRpaoG-fQK_iJoXiT1e1UkKKhpN_qKUZQPvgYmlsd6J6XnOpKknFru3Rf1Bl9jB6GwM4X84fEY5vCTbFnBO4e5OU6F1G9JOMFMabh39zj_-bCPYbD1y3MQ</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Nik Ab Kadir, Mohd Nasrullah</creator><creator>Mohd Hairon, Suhaily</creator><creator>Ab Hadi, Imi Sairi</creator><creator>Yusof, Siti Norbayah</creator><creator>Muhamat, Siti Maryam</creator><creator>Yaacob, Najib Majdi</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6860-1430</orcidid><orcidid>https://orcid.org/0000-0002-4934-0001</orcidid><orcidid>https://orcid.org/0000-0001-7920-9912</orcidid></search><sort><creationdate>20230330</creationdate><title>A Comparison between the Online Prognostic Tool PREDICT and myBeST for Women with Breast Cancer in Malaysia</title><author>Nik Ab Kadir, Mohd Nasrullah ; Mohd Hairon, Suhaily ; Ab Hadi, Imi Sairi ; Yusof, Siti Norbayah ; Muhamat, Siti Maryam ; Yaacob, Najib Majdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9ee308bed5e84491064b665f3b79d3ec635f9c6b51b3c66255e944ffcadac6db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Committees</topic><topic>Ethics</topic><topic>Lymphatic system</topic><topic>Medical records</topic><topic>Minority &amp; ethnic groups</topic><topic>Mortality</topic><topic>Patients</topic><topic>Probability</topic><topic>Prognosis</topic><topic>Radiation therapy</topic><topic>Survival</topic><topic>Validation studies</topic><topic>Web services</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nik Ab Kadir, Mohd Nasrullah</creatorcontrib><creatorcontrib>Mohd Hairon, Suhaily</creatorcontrib><creatorcontrib>Ab Hadi, Imi Sairi</creatorcontrib><creatorcontrib>Yusof, Siti Norbayah</creatorcontrib><creatorcontrib>Muhamat, Siti Maryam</creatorcontrib><creatorcontrib>Yaacob, Najib Majdi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nik Ab Kadir, Mohd Nasrullah</au><au>Mohd Hairon, Suhaily</au><au>Ab Hadi, Imi Sairi</au><au>Yusof, Siti Norbayah</au><au>Muhamat, Siti Maryam</au><au>Yaacob, Najib Majdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison between the Online Prognostic Tool PREDICT and myBeST for Women with Breast Cancer in Malaysia</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-03-30</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>2064</spage><pages>2064-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>The PREDICT breast cancer is a well-known online calculator to estimate survival probability. We developed a new prognostic model, myBeST, due to the PREDICT tool's limitations when applied to our patients. This study aims to compare the performance of the two models for women with breast cancer in Malaysia. A total of 532 stage I to III patient records who underwent surgical treatment were analysed. They were diagnosed between 2012 and 2016 in seven centres. We obtained baseline predictors and survival outcomes by reviewing patients' medical records. We compare PREDICT and myBeST tools' discriminant performance using receiver-operating characteristic (ROC) analysis. The five-year observed survival was 80.3% (95% CI: 77.0, 83.7). For this cohort, the median five-year survival probabilities estimated by PREDICT and myBeST were 85.8% and 82.6%, respectively. The area under the ROC curve for five-year survival by myBeST was 0.78 (95% CI: 0.73, 0.82) and for PREDICT was 0.75 (95% CI: 0.70, 0.80). Both tools show good performance, with myBeST marginally outperforms PREDICT discriminant performance. Thus, the new prognostic model is perhaps more suitable for women with breast cancer in Malaysia.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37046725</pmid><doi>10.3390/cancers15072064</doi><orcidid>https://orcid.org/0000-0002-6860-1430</orcidid><orcidid>https://orcid.org/0000-0002-4934-0001</orcidid><orcidid>https://orcid.org/0000-0001-7920-9912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2023-03, Vol.15 (7), p.2064
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10093426
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Breast cancer
Cancer therapies
Chemotherapy
Committees
Ethics
Lymphatic system
Medical records
Minority & ethnic groups
Mortality
Patients
Probability
Prognosis
Radiation therapy
Survival
Validation studies
Web services
Womens health
title A Comparison between the Online Prognostic Tool PREDICT and myBeST for Women with Breast Cancer in Malaysia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20between%20the%20Online%20Prognostic%20Tool%20PREDICT%20and%20myBeST%20for%20Women%20with%20Breast%20Cancer%20in%20Malaysia&rft.jtitle=Cancers&rft.au=Nik%20Ab%20Kadir,%20Mohd%20Nasrullah&rft.date=2023-03-30&rft.volume=15&rft.issue=7&rft.spage=2064&rft.pages=2064-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15072064&rft_dat=%3Cgale_pubme%3EA746926156%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799565840&rft_id=info:pmid/37046725&rft_galeid=A746926156&rfr_iscdi=true