Cryo-EM structures of the active NLRP3 inflammasome disc
Inflammasomes are cytosolic innate immune complexes that activate caspase-1 following detection of pathogenic and endogenous dangers 1 – 5 , and NACHT-, leucine-rich repeat (LRR)- and pyrin domain (PYD)-containing protein 3 (NLRP3) is an inflammasome sensor of membrane damage highly important in re...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2023-01, Vol.613 (7944), p.595-600 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 600 |
---|---|
container_issue | 7944 |
container_start_page | 595 |
container_title | Nature (London) |
container_volume | 613 |
creator | Xiao, Le Magupalli, Venkat Giri Wu, Hao |
description | Inflammasomes are cytosolic innate immune complexes that activate caspase-1 following detection of pathogenic and endogenous dangers
1
–
5
, and NACHT-, leucine-rich repeat (LRR)- and pyrin domain (PYD)-containing protein 3 (NLRP3) is an inflammasome sensor of membrane damage highly important in regard to the induction of inflammation
2
,
6
,
7
. Here we report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with adenosine 5′-O-(3-thio)triphosphate, the centrosomal NIMA-related kinase 7 (NEK7) and the adaptor protein ASC, which recruits caspase-1. In these NLRP3–NEK7–ASC complexes, the central NACHT domain of NLRP3 assumes an ATP-bound conformation in which two of its subdomains rotate by about 85° relative to the ADP-bound inactive conformation
8
–
12
. The fish-specific NACHT-associated domain conserved in NLRP3 but absent in most NLRPs
13
becomes ordered in its key regions to stabilize the active NACHT conformation and mediate most interactions in the disc. Mutations on these interactions compromise NLRP3-mediated caspase-1 activation. The N-terminal PYDs from all NLRP3 subunits combine to form a PYD filament that recruits ASC PYD to elicit downstream signalling. Surprisingly, the C-terminal LRR domain and the LRR-bound NEK7 do not participate in disc interfaces. Together with previous structures of an inactive NLRP3 cage in which LRR–LRR interactions play an important role
8
–
11
, we propose that the role of NEK7 is to break the inactive cage to transform NLRP3 into the active NLRP3 inflammasome disc.
We report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with NEK7 and ASC, and propose that the role of NEK7 is to transform NLRP3 into the active NLRP3 inflammasome disc. |
doi_str_mv | 10.1038/s41586-022-05570-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10091861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768531387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-ac5b96808dfe87a36bca56ec6035a1fe9f1335602e8b414597dfe6e069b1a7e83</originalsourceid><addsrcrecordid>eNp9kUtP3DAURq2qVRlo_wALFKkbNqbXb2dVVSNe0gBVBWvL8dxAUBJTO0Hi3-PpUPpYdOXFPffz_XQI2WdwxEDYz1kyZTUFzikoZYDaN2TBpNFUamvekgUAtxSs0DtkN-d7AFDMyPdkR2gpuQK-IHaZniI9vqjylOYwzQlzFdtqusPKh6l7xOpy9f2bqLqx7f0w-BwHrNZdDh_Iu9b3GT--vHvk5uT4enlGV1en58uvKxqkYBP1QTW1tmDXLVrjhW6CVxqDBqE8a7FumRBKA0fbSCZVbQqoEXTdMG_Qij3yZZv7MDcDrgOOU_K9e0jd4NOTi75zf0_G7s7dxkfHAGpmNSsJhy8JKf6YMU9uKPdj3_sR45wdN5JrVTO1QT_9g97HOY2lX6G0VYIJawrFt1RIMeeE7es1DNzGjNuaccWM-2nGbXoc_NnjdeWXigKILZDLaLzF9Pvv_8Q-A2rAmC8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768531387</pqid></control><display><type>article</type><title>Cryo-EM structures of the active NLRP3 inflammasome disc</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xiao, Le ; Magupalli, Venkat Giri ; Wu, Hao</creator><creatorcontrib>Xiao, Le ; Magupalli, Venkat Giri ; Wu, Hao</creatorcontrib><description>Inflammasomes are cytosolic innate immune complexes that activate caspase-1 following detection of pathogenic and endogenous dangers
1
–
5
, and NACHT-, leucine-rich repeat (LRR)- and pyrin domain (PYD)-containing protein 3 (NLRP3) is an inflammasome sensor of membrane damage highly important in regard to the induction of inflammation
2
,
6
,
7
. Here we report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with adenosine 5′-O-(3-thio)triphosphate, the centrosomal NIMA-related kinase 7 (NEK7) and the adaptor protein ASC, which recruits caspase-1. In these NLRP3–NEK7–ASC complexes, the central NACHT domain of NLRP3 assumes an ATP-bound conformation in which two of its subdomains rotate by about 85° relative to the ADP-bound inactive conformation
8
–
12
. The fish-specific NACHT-associated domain conserved in NLRP3 but absent in most NLRPs
13
becomes ordered in its key regions to stabilize the active NACHT conformation and mediate most interactions in the disc. Mutations on these interactions compromise NLRP3-mediated caspase-1 activation. The N-terminal PYDs from all NLRP3 subunits combine to form a PYD filament that recruits ASC PYD to elicit downstream signalling. Surprisingly, the C-terminal LRR domain and the LRR-bound NEK7 do not participate in disc interfaces. Together with previous structures of an inactive NLRP3 cage in which LRR–LRR interactions play an important role
8
–
11
, we propose that the role of NEK7 is to break the inactive cage to transform NLRP3 into the active NLRP3 inflammasome disc.
We report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with NEK7 and ASC, and propose that the role of NEK7 is to transform NLRP3 into the active NLRP3 inflammasome disc.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05570-8</identifier><identifier>PMID: 36442502</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/58 ; 13/1 ; 13/109 ; 13/31 ; 631/250/256/2177 ; 631/535/1258/1259 ; 82 ; 82/80 ; 82/83 ; Adaptor proteins ; Adenosine ; Adenosine diphosphate ; Adenosine Diphosphate - metabolism ; Adenosine triphosphate ; Adenosine Triphosphate - analogs & derivatives ; Adenosine Triphosphate - metabolism ; Animals ; Antigen-antibody complexes ; Cages ; CARD Signaling Adaptor Proteins ; Caspase 1 - metabolism ; Caspase-1 ; Chromatography ; Cryoelectron Microscopy ; Electron microscopy ; Humanities and Social Sciences ; Inflammasomes ; Inflammasomes - chemistry ; Inflammasomes - metabolism ; Interfaces ; Kinases ; Leucine ; Microscopy ; multidisciplinary ; Mutation ; NIMA-Related Kinases ; NLR Family, Pyrin Domain-Containing 3 Protein - chemistry ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; Protein Domains ; Protein structure ; Proteins ; Pyrin protein ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2023-01, Vol.613 (7944), p.595-600</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jan 19, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-ac5b96808dfe87a36bca56ec6035a1fe9f1335602e8b414597dfe6e069b1a7e83</citedby><cites>FETCH-LOGICAL-c431t-ac5b96808dfe87a36bca56ec6035a1fe9f1335602e8b414597dfe6e069b1a7e83</cites><orcidid>0000-0002-7281-8579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05570-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05570-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36442502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Le</creatorcontrib><creatorcontrib>Magupalli, Venkat Giri</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>Cryo-EM structures of the active NLRP3 inflammasome disc</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Inflammasomes are cytosolic innate immune complexes that activate caspase-1 following detection of pathogenic and endogenous dangers
1
–
5
, and NACHT-, leucine-rich repeat (LRR)- and pyrin domain (PYD)-containing protein 3 (NLRP3) is an inflammasome sensor of membrane damage highly important in regard to the induction of inflammation
2
,
6
,
7
. Here we report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with adenosine 5′-O-(3-thio)triphosphate, the centrosomal NIMA-related kinase 7 (NEK7) and the adaptor protein ASC, which recruits caspase-1. In these NLRP3–NEK7–ASC complexes, the central NACHT domain of NLRP3 assumes an ATP-bound conformation in which two of its subdomains rotate by about 85° relative to the ADP-bound inactive conformation
8
–
12
. The fish-specific NACHT-associated domain conserved in NLRP3 but absent in most NLRPs
13
becomes ordered in its key regions to stabilize the active NACHT conformation and mediate most interactions in the disc. Mutations on these interactions compromise NLRP3-mediated caspase-1 activation. The N-terminal PYDs from all NLRP3 subunits combine to form a PYD filament that recruits ASC PYD to elicit downstream signalling. Surprisingly, the C-terminal LRR domain and the LRR-bound NEK7 do not participate in disc interfaces. Together with previous structures of an inactive NLRP3 cage in which LRR–LRR interactions play an important role
8
–
11
, we propose that the role of NEK7 is to break the inactive cage to transform NLRP3 into the active NLRP3 inflammasome disc.
We report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with NEK7 and ASC, and propose that the role of NEK7 is to transform NLRP3 into the active NLRP3 inflammasome disc.</description><subject>101/28</subject><subject>101/58</subject><subject>13/1</subject><subject>13/109</subject><subject>13/31</subject><subject>631/250/256/2177</subject><subject>631/535/1258/1259</subject><subject>82</subject><subject>82/80</subject><subject>82/83</subject><subject>Adaptor proteins</subject><subject>Adenosine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - analogs & derivatives</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Antigen-antibody complexes</subject><subject>Cages</subject><subject>CARD Signaling Adaptor Proteins</subject><subject>Caspase 1 - metabolism</subject><subject>Caspase-1</subject><subject>Chromatography</subject><subject>Cryoelectron Microscopy</subject><subject>Electron microscopy</subject><subject>Humanities and Social Sciences</subject><subject>Inflammasomes</subject><subject>Inflammasomes - chemistry</subject><subject>Inflammasomes - metabolism</subject><subject>Interfaces</subject><subject>Kinases</subject><subject>Leucine</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>NIMA-Related Kinases</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - chemistry</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>Protein Domains</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Pyrin protein</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtP3DAURq2qVRlo_wALFKkbNqbXb2dVVSNe0gBVBWvL8dxAUBJTO0Hi3-PpUPpYdOXFPffz_XQI2WdwxEDYz1kyZTUFzikoZYDaN2TBpNFUamvekgUAtxSs0DtkN-d7AFDMyPdkR2gpuQK-IHaZniI9vqjylOYwzQlzFdtqusPKh6l7xOpy9f2bqLqx7f0w-BwHrNZdDh_Iu9b3GT--vHvk5uT4enlGV1en58uvKxqkYBP1QTW1tmDXLVrjhW6CVxqDBqE8a7FumRBKA0fbSCZVbQqoEXTdMG_Qij3yZZv7MDcDrgOOU_K9e0jd4NOTi75zf0_G7s7dxkfHAGpmNSsJhy8JKf6YMU9uKPdj3_sR45wdN5JrVTO1QT_9g97HOY2lX6G0VYIJawrFt1RIMeeE7es1DNzGjNuaccWM-2nGbXoc_NnjdeWXigKILZDLaLzF9Pvv_8Q-A2rAmC8</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Xiao, Le</creator><creator>Magupalli, Venkat Giri</creator><creator>Wu, Hao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7281-8579</orcidid></search><sort><creationdate>20230119</creationdate><title>Cryo-EM structures of the active NLRP3 inflammasome disc</title><author>Xiao, Le ; Magupalli, Venkat Giri ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-ac5b96808dfe87a36bca56ec6035a1fe9f1335602e8b414597dfe6e069b1a7e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>101/28</topic><topic>101/58</topic><topic>13/1</topic><topic>13/109</topic><topic>13/31</topic><topic>631/250/256/2177</topic><topic>631/535/1258/1259</topic><topic>82</topic><topic>82/80</topic><topic>82/83</topic><topic>Adaptor proteins</topic><topic>Adenosine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - analogs & derivatives</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Antigen-antibody complexes</topic><topic>Cages</topic><topic>CARD Signaling Adaptor Proteins</topic><topic>Caspase 1 - metabolism</topic><topic>Caspase-1</topic><topic>Chromatography</topic><topic>Cryoelectron Microscopy</topic><topic>Electron microscopy</topic><topic>Humanities and Social Sciences</topic><topic>Inflammasomes</topic><topic>Inflammasomes - chemistry</topic><topic>Inflammasomes - metabolism</topic><topic>Interfaces</topic><topic>Kinases</topic><topic>Leucine</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>NIMA-Related Kinases</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - chemistry</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>Protein Domains</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Pyrin protein</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Le</creatorcontrib><creatorcontrib>Magupalli, Venkat Giri</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Le</au><au>Magupalli, Venkat Giri</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structures of the active NLRP3 inflammasome disc</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-01-19</date><risdate>2023</risdate><volume>613</volume><issue>7944</issue><spage>595</spage><epage>600</epage><pages>595-600</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Inflammasomes are cytosolic innate immune complexes that activate caspase-1 following detection of pathogenic and endogenous dangers
1
–
5
, and NACHT-, leucine-rich repeat (LRR)- and pyrin domain (PYD)-containing protein 3 (NLRP3) is an inflammasome sensor of membrane damage highly important in regard to the induction of inflammation
2
,
6
,
7
. Here we report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with adenosine 5′-O-(3-thio)triphosphate, the centrosomal NIMA-related kinase 7 (NEK7) and the adaptor protein ASC, which recruits caspase-1. In these NLRP3–NEK7–ASC complexes, the central NACHT domain of NLRP3 assumes an ATP-bound conformation in which two of its subdomains rotate by about 85° relative to the ADP-bound inactive conformation
8
–
12
. The fish-specific NACHT-associated domain conserved in NLRP3 but absent in most NLRPs
13
becomes ordered in its key regions to stabilize the active NACHT conformation and mediate most interactions in the disc. Mutations on these interactions compromise NLRP3-mediated caspase-1 activation. The N-terminal PYDs from all NLRP3 subunits combine to form a PYD filament that recruits ASC PYD to elicit downstream signalling. Surprisingly, the C-terminal LRR domain and the LRR-bound NEK7 do not participate in disc interfaces. Together with previous structures of an inactive NLRP3 cage in which LRR–LRR interactions play an important role
8
–
11
, we propose that the role of NEK7 is to break the inactive cage to transform NLRP3 into the active NLRP3 inflammasome disc.
We report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with NEK7 and ASC, and propose that the role of NEK7 is to transform NLRP3 into the active NLRP3 inflammasome disc.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36442502</pmid><doi>10.1038/s41586-022-05570-8</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7281-8579</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2023-01, Vol.613 (7944), p.595-600 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10091861 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 101/28 101/58 13/1 13/109 13/31 631/250/256/2177 631/535/1258/1259 82 82/80 82/83 Adaptor proteins Adenosine Adenosine diphosphate Adenosine Diphosphate - metabolism Adenosine triphosphate Adenosine Triphosphate - analogs & derivatives Adenosine Triphosphate - metabolism Animals Antigen-antibody complexes Cages CARD Signaling Adaptor Proteins Caspase 1 - metabolism Caspase-1 Chromatography Cryoelectron Microscopy Electron microscopy Humanities and Social Sciences Inflammasomes Inflammasomes - chemistry Inflammasomes - metabolism Interfaces Kinases Leucine Microscopy multidisciplinary Mutation NIMA-Related Kinases NLR Family, Pyrin Domain-Containing 3 Protein - chemistry NLR Family, Pyrin Domain-Containing 3 Protein - metabolism Protein Domains Protein structure Proteins Pyrin protein Science Science (multidisciplinary) |
title | Cryo-EM structures of the active NLRP3 inflammasome disc |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structures%20of%20the%20active%20NLRP3%20inflammasome%20disc&rft.jtitle=Nature%20(London)&rft.au=Xiao,%20Le&rft.date=2023-01-19&rft.volume=613&rft.issue=7944&rft.spage=595&rft.epage=600&rft.pages=595-600&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05570-8&rft_dat=%3Cproquest_pubme%3E2768531387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2768531387&rft_id=info:pmid/36442502&rfr_iscdi=true |