Dioxygen Activation by a Bioinspired Tungsten(IV) Complex

An increasing number of discovered tungstoenzymes raises interest in the biomimetic chemistry of tungsten complexes in oxidation states +IV, +V, and +VI. Bioinspired (sulfur-rich) tungsten­(VI) dioxido complexes are relatively prevalent in literature. Still, their energetically demanding reduction d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2023-04, Vol.62 (14), p.5669-5676
Hauptverfasser: Ćorović, Miljan Z., Belaj, Ferdinand, Mösch-Zanetti, Nadia C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5676
container_issue 14
container_start_page 5669
container_title Inorganic chemistry
container_volume 62
creator Ćorović, Miljan Z.
Belaj, Ferdinand
Mösch-Zanetti, Nadia C.
description An increasing number of discovered tungstoenzymes raises interest in the biomimetic chemistry of tungsten complexes in oxidation states +IV, +V, and +VI. Bioinspired (sulfur-rich) tungsten­(VI) dioxido complexes are relatively prevalent in literature. Still, their energetically demanding reduction directly correlates with a small number of known tungsten­(IV) oxido complexes, whose chemistry is not well explored. In this paper, a reduction of the [WO2(6-MePyS)2] (6-MePyS = 6-methylpyridine-2-thiolate) complex with PMe3 to a phosphine-stabilized tungsten­(IV) oxido complex [WO­(6-MePyS)2(PMe3)2] is described. This tungsten­(IV) complex partially releases one PMe3 ligand in solution, creating a vacant coordination site capable of activating dioxygen to form [WO2(6-MePyS)2] and OPMe3. Therefore, [WO2(6-MePyS)2] can be used as a catalyst for the aerobic oxidation of PMe3, rendering this complex a rare example of a tungsten system utilizing dioxygen in homogeneous catalysis. Additionally, the investigation of the reactivity of the tungsten­(IV) oxido complex with acetylene, substrate of a tungstoenzyme acetylene hydratase (AH), revealed the formation of the tungsten­(IV) acetylene adduct. Although this adduct was previously reported as an oxidation product of the tungsten­(II) acetylene carbonyl complex, here it is obtained via substitution at the sulfur-rich tungsten­(IV) center, mimicking the initial step of the first shell mechanism for AH as suggested by computational studies.
doi_str_mv 10.1021/acs.inorgchem.3c00228
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10091480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792901321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-1810260bbed1154b2babb4330e77b85700321120fd955f6e987cc46ffc5fc1193</originalsourceid><addsrcrecordid>eNqFkEFP3DAQhS0Egi3tT2iVIz1kmXHsJD5VdNsCEhIXqHqzbK-zGCX2YieI_fc12u2qnDhZGr_35s1HyGeEOQLFc2XS3PkQV-bBDvPKAFDaHpAZcgolR_hzSGZ5BiXWtTghH1J6BABRsfqYnFS1aAVDNiPihwsvm5X1xYUZ3bMaXfCF3hSq-O6C82ntol0Wd5NfpdH6s-vfX4tFGNa9fflIjjrVJ_tp956S-18_7xZX5c3t5fXi4qZUjLOxxDbXrUFru0TkTFOttGZVBbZpdMsbgIoiUuiWgvOutqJtjGF11xneGURRnZJv29z1pAe7NNaPUfVyHd2g4kYG5eTbH-8e5Co8S8znImshJ5ztEmJ4mmwa5eCSsX2vvA1TkrQRVADmHlnKt1ITQ0rRdvs9CPKVu8zc5Z673HHPvi__l9y7_oHOAtwKXv2PYYo-M3sn9C_r5ZMh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792901321</pqid></control><display><type>article</type><title>Dioxygen Activation by a Bioinspired Tungsten(IV) Complex</title><source>ACS Publications</source><creator>Ćorović, Miljan Z. ; Belaj, Ferdinand ; Mösch-Zanetti, Nadia C.</creator><creatorcontrib>Ćorović, Miljan Z. ; Belaj, Ferdinand ; Mösch-Zanetti, Nadia C.</creatorcontrib><description>An increasing number of discovered tungstoenzymes raises interest in the biomimetic chemistry of tungsten complexes in oxidation states +IV, +V, and +VI. Bioinspired (sulfur-rich) tungsten­(VI) dioxido complexes are relatively prevalent in literature. Still, their energetically demanding reduction directly correlates with a small number of known tungsten­(IV) oxido complexes, whose chemistry is not well explored. In this paper, a reduction of the [WO2(6-MePyS)2] (6-MePyS = 6-methylpyridine-2-thiolate) complex with PMe3 to a phosphine-stabilized tungsten­(IV) oxido complex [WO­(6-MePyS)2(PMe3)2] is described. This tungsten­(IV) complex partially releases one PMe3 ligand in solution, creating a vacant coordination site capable of activating dioxygen to form [WO2(6-MePyS)2] and OPMe3. Therefore, [WO2(6-MePyS)2] can be used as a catalyst for the aerobic oxidation of PMe3, rendering this complex a rare example of a tungsten system utilizing dioxygen in homogeneous catalysis. Additionally, the investigation of the reactivity of the tungsten­(IV) oxido complex with acetylene, substrate of a tungstoenzyme acetylene hydratase (AH), revealed the formation of the tungsten­(IV) acetylene adduct. Although this adduct was previously reported as an oxidation product of the tungsten­(II) acetylene carbonyl complex, here it is obtained via substitution at the sulfur-rich tungsten­(IV) center, mimicking the initial step of the first shell mechanism for AH as suggested by computational studies.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.3c00228</identifier><identifier>PMID: 36989414</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2023-04, Vol.62 (14), p.5669-5676</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a454t-1810260bbed1154b2babb4330e77b85700321120fd955f6e987cc46ffc5fc1193</citedby><cites>FETCH-LOGICAL-a454t-1810260bbed1154b2babb4330e77b85700321120fd955f6e987cc46ffc5fc1193</cites><orcidid>0000-0002-1349-6725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.3c00228$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00228$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36989414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ćorović, Miljan Z.</creatorcontrib><creatorcontrib>Belaj, Ferdinand</creatorcontrib><creatorcontrib>Mösch-Zanetti, Nadia C.</creatorcontrib><title>Dioxygen Activation by a Bioinspired Tungsten(IV) Complex</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>An increasing number of discovered tungstoenzymes raises interest in the biomimetic chemistry of tungsten complexes in oxidation states +IV, +V, and +VI. Bioinspired (sulfur-rich) tungsten­(VI) dioxido complexes are relatively prevalent in literature. Still, their energetically demanding reduction directly correlates with a small number of known tungsten­(IV) oxido complexes, whose chemistry is not well explored. In this paper, a reduction of the [WO2(6-MePyS)2] (6-MePyS = 6-methylpyridine-2-thiolate) complex with PMe3 to a phosphine-stabilized tungsten­(IV) oxido complex [WO­(6-MePyS)2(PMe3)2] is described. This tungsten­(IV) complex partially releases one PMe3 ligand in solution, creating a vacant coordination site capable of activating dioxygen to form [WO2(6-MePyS)2] and OPMe3. Therefore, [WO2(6-MePyS)2] can be used as a catalyst for the aerobic oxidation of PMe3, rendering this complex a rare example of a tungsten system utilizing dioxygen in homogeneous catalysis. Additionally, the investigation of the reactivity of the tungsten­(IV) oxido complex with acetylene, substrate of a tungstoenzyme acetylene hydratase (AH), revealed the formation of the tungsten­(IV) acetylene adduct. Although this adduct was previously reported as an oxidation product of the tungsten­(II) acetylene carbonyl complex, here it is obtained via substitution at the sulfur-rich tungsten­(IV) center, mimicking the initial step of the first shell mechanism for AH as suggested by computational studies.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP3DAQhS0Egi3tT2iVIz1kmXHsJD5VdNsCEhIXqHqzbK-zGCX2YieI_fc12u2qnDhZGr_35s1HyGeEOQLFc2XS3PkQV-bBDvPKAFDaHpAZcgolR_hzSGZ5BiXWtTghH1J6BABRsfqYnFS1aAVDNiPihwsvm5X1xYUZ3bMaXfCF3hSq-O6C82ntol0Wd5NfpdH6s-vfX4tFGNa9fflIjjrVJ_tp956S-18_7xZX5c3t5fXi4qZUjLOxxDbXrUFru0TkTFOttGZVBbZpdMsbgIoiUuiWgvOutqJtjGF11xneGURRnZJv29z1pAe7NNaPUfVyHd2g4kYG5eTbH-8e5Co8S8znImshJ5ztEmJ4mmwa5eCSsX2vvA1TkrQRVADmHlnKt1ITQ0rRdvs9CPKVu8zc5Z673HHPvi__l9y7_oHOAtwKXv2PYYo-M3sn9C_r5ZMh</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>Ćorović, Miljan Z.</creator><creator>Belaj, Ferdinand</creator><creator>Mösch-Zanetti, Nadia C.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1349-6725</orcidid></search><sort><creationdate>20230410</creationdate><title>Dioxygen Activation by a Bioinspired Tungsten(IV) Complex</title><author>Ćorović, Miljan Z. ; Belaj, Ferdinand ; Mösch-Zanetti, Nadia C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-1810260bbed1154b2babb4330e77b85700321120fd955f6e987cc46ffc5fc1193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ćorović, Miljan Z.</creatorcontrib><creatorcontrib>Belaj, Ferdinand</creatorcontrib><creatorcontrib>Mösch-Zanetti, Nadia C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ćorović, Miljan Z.</au><au>Belaj, Ferdinand</au><au>Mösch-Zanetti, Nadia C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dioxygen Activation by a Bioinspired Tungsten(IV) Complex</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2023-04-10</date><risdate>2023</risdate><volume>62</volume><issue>14</issue><spage>5669</spage><epage>5676</epage><pages>5669-5676</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>An increasing number of discovered tungstoenzymes raises interest in the biomimetic chemistry of tungsten complexes in oxidation states +IV, +V, and +VI. Bioinspired (sulfur-rich) tungsten­(VI) dioxido complexes are relatively prevalent in literature. Still, their energetically demanding reduction directly correlates with a small number of known tungsten­(IV) oxido complexes, whose chemistry is not well explored. In this paper, a reduction of the [WO2(6-MePyS)2] (6-MePyS = 6-methylpyridine-2-thiolate) complex with PMe3 to a phosphine-stabilized tungsten­(IV) oxido complex [WO­(6-MePyS)2(PMe3)2] is described. This tungsten­(IV) complex partially releases one PMe3 ligand in solution, creating a vacant coordination site capable of activating dioxygen to form [WO2(6-MePyS)2] and OPMe3. Therefore, [WO2(6-MePyS)2] can be used as a catalyst for the aerobic oxidation of PMe3, rendering this complex a rare example of a tungsten system utilizing dioxygen in homogeneous catalysis. Additionally, the investigation of the reactivity of the tungsten­(IV) oxido complex with acetylene, substrate of a tungstoenzyme acetylene hydratase (AH), revealed the formation of the tungsten­(IV) acetylene adduct. Although this adduct was previously reported as an oxidation product of the tungsten­(II) acetylene carbonyl complex, here it is obtained via substitution at the sulfur-rich tungsten­(IV) center, mimicking the initial step of the first shell mechanism for AH as suggested by computational studies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36989414</pmid><doi>10.1021/acs.inorgchem.3c00228</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1349-6725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2023-04, Vol.62 (14), p.5669-5676
issn 0020-1669
1520-510X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10091480
source ACS Publications
title Dioxygen Activation by a Bioinspired Tungsten(IV) Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dioxygen%20Activation%20by%20a%20Bioinspired%20Tungsten(IV)%20Complex&rft.jtitle=Inorganic%20chemistry&rft.au=C%CC%81orovic%CC%81,%20Miljan%20Z.&rft.date=2023-04-10&rft.volume=62&rft.issue=14&rft.spage=5669&rft.epage=5676&rft.pages=5669-5676&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.3c00228&rft_dat=%3Cproquest_pubme%3E2792901321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792901321&rft_id=info:pmid/36989414&rfr_iscdi=true