Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties
In this work, different formulations of a room-temperature silicone composite backing material (SCBM) composed of polydimethylsiloxane (PDMS), fumed silica and corn starch were investigated using different characterization techniques, i.e., differential scanning calorimetry, thermogravimetry analysi...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-10, Vol.56 (29), p.16362-16375 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16375 |
---|---|
container_issue | 29 |
container_start_page | 16362 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Tao, Ran Zhang, Fan Nguyen, Huong Giang Bernstein, Philip Forster, Amanda L. Mrozek, Randy A. Forster, Aaron M. |
description | In this work, different formulations of a room-temperature silicone composite backing material (SCBM) composed of polydimethylsiloxane (PDMS), fumed silica and corn starch were investigated using different characterization techniques, i.e., differential scanning calorimetry, thermogravimetry analysis, X-ray diffraction (XRD) and small-angle X-ray scattering, as a function of controlled relative humidity. At ambient relative humidities in the range of about 20–80%, the equilibrium water content in the SCBM ranges from approximately 4–10%, which is predominantly absorbed by the corn starch. This amount of water content has been shown to have minimal effect on thermal transition temperatures (melting and glass transition) of the SCBMs. The enthalpy of melting increases with increasing relative humidity, which reflects the heterogeneous semicrystalline structure of starch granules and the role of moisture in facilitating the formation of amylopectin double helices mainly in the imperfect crystalline regions. The thermal degradation of SCBM exhibits three major mass loss steps that correspond to dehydration, decomposition of corn starch and decomposition of PDMS. The XRD patterns reveal a characteristic diffuse peak for amorphous PDMS and an
A
-type crystallinity for the corn starch. The XRD results show no observable changes in the crystal type and crystallinity as a function of moisture content. Results from this work help clarify the fundamental structure–property relationships in SCBMs, which are important for future development of documentary standards, especially the handling and storage specifications of next-generation ballistic witness materials for body armor testing.
Graphical abstract |
doi_str_mv | 10.1007/s10853-021-06334-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10088069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A671783590</galeid><sourcerecordid>A671783590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-b1f2049a8d7de53a45de269e0d8a22f8842307016db6c80b45e84e73c74c58273</originalsourceid><addsrcrecordid>eNp9Us1u1DAQjhCILoUX4IAicYFDytiOY4dLVVX8VKqEBOVseZ3JrqvEDrbTbt-Ax8a7WwrLAUVWpPl-xt94iuIlgRMCIN5FApKzCiipoGGsrjaPigXhglW1BPa4WABQWtG6IUfFsxivAYALSp4WR0wAJ0S2i-LnFY4TBp3mgJV1EV20yd5gGe1gjXdYGj9OPhcxljqWSz0MNiZrylubHMZYjjphsHqI78u0xtKOkzap9H15uwWy3CV0ueB2cD5h9NP6Llqjh3IKPndPFuPz4kmfTfDF_f-4-P7xw9X55-ryy6eL87PLytRtm6ol6SnUrZad6JAzXfMOadMidFJT2ktZUwYCSNMtGyNhWXOUNQpmRG24pIIdF6d732lejtiZfLegBzUFO-pwp7y26hBxdq1W_kblkUsJTZsd3tw7BP9jxpjUaKPBYdAO_RwVlQANpc2u2et_qNd-Di7nU5Q3QHgjGWTWyZ610gMq63qfG5v8dTju3qC3uX7WCCIk4-1W8PZAsJvxJq30HKO6-Pb1kEv3XBN8jAH7h6gEtpmE2q-RymukdmukNln06u8hPUh-700msD0hZsitMPwJ9h_bX6Kh1iU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560156830</pqid></control><display><type>article</type><title>Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties</title><source>SpringerNature Journals</source><creator>Tao, Ran ; Zhang, Fan ; Nguyen, Huong Giang ; Bernstein, Philip ; Forster, Amanda L. ; Mrozek, Randy A. ; Forster, Aaron M.</creator><creatorcontrib>Tao, Ran ; Zhang, Fan ; Nguyen, Huong Giang ; Bernstein, Philip ; Forster, Amanda L. ; Mrozek, Randy A. ; Forster, Aaron M.</creatorcontrib><description>In this work, different formulations of a room-temperature silicone composite backing material (SCBM) composed of polydimethylsiloxane (PDMS), fumed silica and corn starch were investigated using different characterization techniques, i.e., differential scanning calorimetry, thermogravimetry analysis, X-ray diffraction (XRD) and small-angle X-ray scattering, as a function of controlled relative humidity. At ambient relative humidities in the range of about 20–80%, the equilibrium water content in the SCBM ranges from approximately 4–10%, which is predominantly absorbed by the corn starch. This amount of water content has been shown to have minimal effect on thermal transition temperatures (melting and glass transition) of the SCBMs. The enthalpy of melting increases with increasing relative humidity, which reflects the heterogeneous semicrystalline structure of starch granules and the role of moisture in facilitating the formation of amylopectin double helices mainly in the imperfect crystalline regions. The thermal degradation of SCBM exhibits three major mass loss steps that correspond to dehydration, decomposition of corn starch and decomposition of PDMS. The XRD patterns reveal a characteristic diffuse peak for amorphous PDMS and an
A
-type crystallinity for the corn starch. The XRD results show no observable changes in the crystal type and crystallinity as a function of moisture content. Results from this work help clarify the fundamental structure–property relationships in SCBMs, which are important for future development of documentary standards, especially the handling and storage specifications of next-generation ballistic witness materials for body armor testing.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06334-x</identifier><identifier>PMID: 37051189</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ballistic impact tests ; Body armor ; Calorimetry ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composites & Nanocomposites ; Crystal structure ; Crystallinity ; Crystallography and Scattering Methods ; Decomposition ; Dehydration ; Differential scanning calorimetry ; Diffraction ; Dimethylpolysiloxane ; Enthalpy ; Glass transition temperature ; Helices ; Humidity ; Materials handling ; Materials Science ; Moisture content ; Polydimethylsiloxane ; Polymer Sciences ; Relative humidity ; Room temperature ; Silica fume ; Silicon dioxide ; Silicone resins ; Silicones ; Solid Mechanics ; Temperature ; Thermal degradation ; Thermogravimetry ; Thermophysical properties ; Water ; X-ray diffraction ; X-ray scattering ; X-rays</subject><ispartof>Journal of materials science, 2021-10, Vol.56 (29), p.16362-16375</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c499t-b1f2049a8d7de53a45de269e0d8a22f8842307016db6c80b45e84e73c74c58273</cites><orcidid>0000-0002-5208-7895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06334-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06334-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37051189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Nguyen, Huong Giang</creatorcontrib><creatorcontrib>Bernstein, Philip</creatorcontrib><creatorcontrib>Forster, Amanda L.</creatorcontrib><creatorcontrib>Mrozek, Randy A.</creatorcontrib><creatorcontrib>Forster, Aaron M.</creatorcontrib><title>Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><addtitle>J Mater Sci</addtitle><description>In this work, different formulations of a room-temperature silicone composite backing material (SCBM) composed of polydimethylsiloxane (PDMS), fumed silica and corn starch were investigated using different characterization techniques, i.e., differential scanning calorimetry, thermogravimetry analysis, X-ray diffraction (XRD) and small-angle X-ray scattering, as a function of controlled relative humidity. At ambient relative humidities in the range of about 20–80%, the equilibrium water content in the SCBM ranges from approximately 4–10%, which is predominantly absorbed by the corn starch. This amount of water content has been shown to have minimal effect on thermal transition temperatures (melting and glass transition) of the SCBMs. The enthalpy of melting increases with increasing relative humidity, which reflects the heterogeneous semicrystalline structure of starch granules and the role of moisture in facilitating the formation of amylopectin double helices mainly in the imperfect crystalline regions. The thermal degradation of SCBM exhibits three major mass loss steps that correspond to dehydration, decomposition of corn starch and decomposition of PDMS. The XRD patterns reveal a characteristic diffuse peak for amorphous PDMS and an
A
-type crystallinity for the corn starch. The XRD results show no observable changes in the crystal type and crystallinity as a function of moisture content. Results from this work help clarify the fundamental structure–property relationships in SCBMs, which are important for future development of documentary standards, especially the handling and storage specifications of next-generation ballistic witness materials for body armor testing.
Graphical abstract</description><subject>Ballistic impact tests</subject><subject>Body armor</subject><subject>Calorimetry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composites & Nanocomposites</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography and Scattering Methods</subject><subject>Decomposition</subject><subject>Dehydration</subject><subject>Differential scanning calorimetry</subject><subject>Diffraction</subject><subject>Dimethylpolysiloxane</subject><subject>Enthalpy</subject><subject>Glass transition temperature</subject><subject>Helices</subject><subject>Humidity</subject><subject>Materials handling</subject><subject>Materials Science</subject><subject>Moisture content</subject><subject>Polydimethylsiloxane</subject><subject>Polymer Sciences</subject><subject>Relative humidity</subject><subject>Room temperature</subject><subject>Silica fume</subject><subject>Silicon dioxide</subject><subject>Silicone resins</subject><subject>Silicones</subject><subject>Solid Mechanics</subject><subject>Temperature</subject><subject>Thermal degradation</subject><subject>Thermogravimetry</subject><subject>Thermophysical properties</subject><subject>Water</subject><subject>X-ray diffraction</subject><subject>X-ray scattering</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9Us1u1DAQjhCILoUX4IAicYFDytiOY4dLVVX8VKqEBOVseZ3JrqvEDrbTbt-Ax8a7WwrLAUVWpPl-xt94iuIlgRMCIN5FApKzCiipoGGsrjaPigXhglW1BPa4WABQWtG6IUfFsxivAYALSp4WR0wAJ0S2i-LnFY4TBp3mgJV1EV20yd5gGe1gjXdYGj9OPhcxljqWSz0MNiZrylubHMZYjjphsHqI78u0xtKOkzap9H15uwWy3CV0ueB2cD5h9NP6Llqjh3IKPndPFuPz4kmfTfDF_f-4-P7xw9X55-ryy6eL87PLytRtm6ol6SnUrZad6JAzXfMOadMidFJT2ktZUwYCSNMtGyNhWXOUNQpmRG24pIIdF6d732lejtiZfLegBzUFO-pwp7y26hBxdq1W_kblkUsJTZsd3tw7BP9jxpjUaKPBYdAO_RwVlQANpc2u2et_qNd-Di7nU5Q3QHgjGWTWyZ610gMq63qfG5v8dTju3qC3uX7WCCIk4-1W8PZAsJvxJq30HKO6-Pb1kEv3XBN8jAH7h6gEtpmE2q-RymukdmukNln06u8hPUh-700msD0hZsitMPwJ9h_bX6Kh1iU</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Tao, Ran</creator><creator>Zhang, Fan</creator><creator>Nguyen, Huong Giang</creator><creator>Bernstein, Philip</creator><creator>Forster, Amanda L.</creator><creator>Mrozek, Randy A.</creator><creator>Forster, Aaron M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5208-7895</orcidid></search><sort><creationdate>20211001</creationdate><title>Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties</title><author>Tao, Ran ; Zhang, Fan ; Nguyen, Huong Giang ; Bernstein, Philip ; Forster, Amanda L. ; Mrozek, Randy A. ; Forster, Aaron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-b1f2049a8d7de53a45de269e0d8a22f8842307016db6c80b45e84e73c74c58273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ballistic impact tests</topic><topic>Body armor</topic><topic>Calorimetry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composites & Nanocomposites</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography and Scattering Methods</topic><topic>Decomposition</topic><topic>Dehydration</topic><topic>Differential scanning calorimetry</topic><topic>Diffraction</topic><topic>Dimethylpolysiloxane</topic><topic>Enthalpy</topic><topic>Glass transition temperature</topic><topic>Helices</topic><topic>Humidity</topic><topic>Materials handling</topic><topic>Materials Science</topic><topic>Moisture content</topic><topic>Polydimethylsiloxane</topic><topic>Polymer Sciences</topic><topic>Relative humidity</topic><topic>Room temperature</topic><topic>Silica fume</topic><topic>Silicon dioxide</topic><topic>Silicone resins</topic><topic>Silicones</topic><topic>Solid Mechanics</topic><topic>Temperature</topic><topic>Thermal degradation</topic><topic>Thermogravimetry</topic><topic>Thermophysical properties</topic><topic>Water</topic><topic>X-ray diffraction</topic><topic>X-ray scattering</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Nguyen, Huong Giang</creatorcontrib><creatorcontrib>Bernstein, Philip</creatorcontrib><creatorcontrib>Forster, Amanda L.</creatorcontrib><creatorcontrib>Mrozek, Randy A.</creatorcontrib><creatorcontrib>Forster, Aaron M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Ran</au><au>Zhang, Fan</au><au>Nguyen, Huong Giang</au><au>Bernstein, Philip</au><au>Forster, Amanda L.</au><au>Mrozek, Randy A.</au><au>Forster, Aaron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><addtitle>J Mater Sci</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>56</volume><issue>29</issue><spage>16362</spage><epage>16375</epage><pages>16362-16375</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In this work, different formulations of a room-temperature silicone composite backing material (SCBM) composed of polydimethylsiloxane (PDMS), fumed silica and corn starch were investigated using different characterization techniques, i.e., differential scanning calorimetry, thermogravimetry analysis, X-ray diffraction (XRD) and small-angle X-ray scattering, as a function of controlled relative humidity. At ambient relative humidities in the range of about 20–80%, the equilibrium water content in the SCBM ranges from approximately 4–10%, which is predominantly absorbed by the corn starch. This amount of water content has been shown to have minimal effect on thermal transition temperatures (melting and glass transition) of the SCBMs. The enthalpy of melting increases with increasing relative humidity, which reflects the heterogeneous semicrystalline structure of starch granules and the role of moisture in facilitating the formation of amylopectin double helices mainly in the imperfect crystalline regions. The thermal degradation of SCBM exhibits three major mass loss steps that correspond to dehydration, decomposition of corn starch and decomposition of PDMS. The XRD patterns reveal a characteristic diffuse peak for amorphous PDMS and an
A
-type crystallinity for the corn starch. The XRD results show no observable changes in the crystal type and crystallinity as a function of moisture content. Results from this work help clarify the fundamental structure–property relationships in SCBMs, which are important for future development of documentary standards, especially the handling and storage specifications of next-generation ballistic witness materials for body armor testing.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37051189</pmid><doi>10.1007/s10853-021-06334-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5208-7895</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-10, Vol.56 (29), p.16362-16375 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10088069 |
source | SpringerNature Journals |
subjects | Ballistic impact tests Body armor Calorimetry Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composites & Nanocomposites Crystal structure Crystallinity Crystallography and Scattering Methods Decomposition Dehydration Differential scanning calorimetry Diffraction Dimethylpolysiloxane Enthalpy Glass transition temperature Helices Humidity Materials handling Materials Science Moisture content Polydimethylsiloxane Polymer Sciences Relative humidity Room temperature Silica fume Silicon dioxide Silicone resins Silicones Solid Mechanics Temperature Thermal degradation Thermogravimetry Thermophysical properties Water X-ray diffraction X-ray scattering X-rays |
title | Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-insensitive%20silicone%20composites%20as%20ballistic%20witness%20materials:%20the%20impact%20of%20water%20content%20on%20the%20thermophysical%20properties&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tao,%20Ran&rft.date=2021-10-01&rft.volume=56&rft.issue=29&rft.spage=16362&rft.epage=16375&rft.pages=16362-16375&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06334-x&rft_dat=%3Cgale_pubme%3EA671783590%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560156830&rft_id=info:pmid/37051189&rft_galeid=A671783590&rfr_iscdi=true |