Thymoquinone induces apoptosis in temozolomide‐resistant glioblastoma cells via the p38 mitogen‐activated protein kinase signaling pathway

Temozolomide (TMZ) can cross the blood‐brain barrier (BBB) and deliver methyl groups to the purine (guanine) bases of DNA, leading to mispairing during DNA replication and subsequent cell death. However, increased expression of the repair enzyme methyl guanine methyltransferase (MGMT), which removes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology 2023-01, Vol.38 (1), p.90-100
Hauptverfasser: Mai, Ai, Ye, Shu‐Wen, Tu, Jia‐Yu, Gao, Jun, Kang, Zhan‐Fang, Yao, Qian‐Ming, Ting, Wei‐Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 90
container_title Environmental toxicology
container_volume 38
creator Mai, Ai
Ye, Shu‐Wen
Tu, Jia‐Yu
Gao, Jun
Kang, Zhan‐Fang
Yao, Qian‐Ming
Ting, Wei‐Jen
description Temozolomide (TMZ) can cross the blood‐brain barrier (BBB) and deliver methyl groups to the purine (guanine) bases of DNA, leading to mispairing during DNA replication and subsequent cell death. However, increased expression of the repair enzyme methyl guanine methyltransferase (MGMT), which removes methyl groups from purine bases, counteracts methylation by TMZ. We evaluated the anticancer potential of thymoquinone (TQ), a hydrophobic flavonoid that inhibits resistance and induces apoptosis in various cancer cells, both in vitro and in vivo. In vitro experiments showed that compared with the Hs683 and M059J cell lines, U251 cells were more sensitive to TMZ. Compared to U251 cells, U251R cells, a TMZ drug‐resistant strain established in this study, are characterized by increased expression of phosphorylated extracellular signal‐regulated kinase (p‐ERK) and MGMT. TQ treatments induced apoptosis in all cell lines. The p38 mitogen‐activated protein kinase signal pathway was mainly activated in U251 and U251R cells; however, p‐ERK and MGMT upregulation could not suppress TQ effects. Furthermore, si‐p38 pretreatment of U251R cells in TQ treatments inhibited cell apoptosis. We speculate that TQ contributed to the phosphorylation and activation of p38, but not of ERK‐induced apoptosis (irrespective of TMZ resistance). In vivo, U251R‐derived tumors subcutaneously inoculated in nude mice exhibited significant tumor volume reduction after TQ or TQ + TMZ cotreatments. High‐performance liquid chromatography assay confirmed the presence of TQ in murine brain tissues. Our findings demonstrate that TQ can effectively cross the BBB and function alone or in combination with TMZ to treat glioblastoma.
doi_str_mv 10.1002/tox.23664
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10087852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720433265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4444-f07b4c84640c8e9987d25a6958da0ac10ca98ec6d1f6f7bfa5cd991688c6c9c43</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqVw4AWQJS5wSGs7tuOcUFVRQKrUyyJxs2adya5LYofY2bKc-gSIZ-RJ8HZLBUj4Ymv8-Z_x_xfFc0aPGaX8JIWvx7xSSjwoDpnkvKx5rR_enmkpqGYHxZMYryiljZLqcXFQKVYr1tSHxffFejuEL7PzwSNxvp0tRgJjGFOILuYKSTiEb6EPg2vx582PCXM9gU9k1buw7CGmMACx2PeRbByQtEYyVpoMLoUV-vwEbHIbSNiScQoJs-Zn5yEiiW7loXd-RUZI62vYPi0eddBHfHa3HxUfz98uzt6XF5fvPpydXpRW5FV2tF4Kq4US1GpsGl23XIJqpG6BgmXUQqPRqpZ1qquXHUjbNg1TWltlGyuqo-LNXneclwO2Fn2aoDfj5AaYtiaAM3_feLc2q7Ax2W9da8mzwqs7hSnbhzGZwcWdCeAxzNHwmlNRVVzJjL78B70K85Q_vqOkEFJJVmXq9Z6yU4hxwu5-GkZ3bbnJMZvbmDP74s_x78nfuWbgZA9cux63_1cyi8tPe8lfotC46Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754456513</pqid></control><display><type>article</type><title>Thymoquinone induces apoptosis in temozolomide‐resistant glioblastoma cells via the p38 mitogen‐activated protein kinase signaling pathway</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Mai, Ai ; Ye, Shu‐Wen ; Tu, Jia‐Yu ; Gao, Jun ; Kang, Zhan‐Fang ; Yao, Qian‐Ming ; Ting, Wei‐Jen</creator><creatorcontrib>Mai, Ai ; Ye, Shu‐Wen ; Tu, Jia‐Yu ; Gao, Jun ; Kang, Zhan‐Fang ; Yao, Qian‐Ming ; Ting, Wei‐Jen</creatorcontrib><description>Temozolomide (TMZ) can cross the blood‐brain barrier (BBB) and deliver methyl groups to the purine (guanine) bases of DNA, leading to mispairing during DNA replication and subsequent cell death. However, increased expression of the repair enzyme methyl guanine methyltransferase (MGMT), which removes methyl groups from purine bases, counteracts methylation by TMZ. We evaluated the anticancer potential of thymoquinone (TQ), a hydrophobic flavonoid that inhibits resistance and induces apoptosis in various cancer cells, both in vitro and in vivo. In vitro experiments showed that compared with the Hs683 and M059J cell lines, U251 cells were more sensitive to TMZ. Compared to U251 cells, U251R cells, a TMZ drug‐resistant strain established in this study, are characterized by increased expression of phosphorylated extracellular signal‐regulated kinase (p‐ERK) and MGMT. TQ treatments induced apoptosis in all cell lines. The p38 mitogen‐activated protein kinase signal pathway was mainly activated in U251 and U251R cells; however, p‐ERK and MGMT upregulation could not suppress TQ effects. Furthermore, si‐p38 pretreatment of U251R cells in TQ treatments inhibited cell apoptosis. We speculate that TQ contributed to the phosphorylation and activation of p38, but not of ERK‐induced apoptosis (irrespective of TMZ resistance). In vivo, U251R‐derived tumors subcutaneously inoculated in nude mice exhibited significant tumor volume reduction after TQ or TQ + TMZ cotreatments. High‐performance liquid chromatography assay confirmed the presence of TQ in murine brain tissues. Our findings demonstrate that TQ can effectively cross the BBB and function alone or in combination with TMZ to treat glioblastoma.</description><identifier>ISSN: 1520-4081</identifier><identifier>EISSN: 1522-7278</identifier><identifier>DOI: 10.1002/tox.23664</identifier><identifier>PMID: 36176197</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Antineoplastic Agents, Alkylating - pharmacology ; Apoptosis ; Blood-brain barrier ; Brain ; Brain cancer ; Brain Neoplasms - metabolism ; Cell death ; Cell Line, Tumor ; Cell lines ; Chromatography ; Dacarbazine - pharmacology ; Dacarbazine - therapeutic use ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA replication ; Drug Resistance, Neoplasm ; Extracellular signal-regulated kinase ; Flavonoids ; Glioblastoma ; Glioblastoma - pathology ; Glioblastoma cells ; Guanine - pharmacology ; Guanine - therapeutic use ; Hydrophobicity ; Inoculation ; Kinases ; Liquid chromatography ; Mice ; Mice, Nude ; Neoplasms ; O6-methylguanine-DNA methyltransferase ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Protein kinase ; Proteins ; Purines ; Purines - pharmacology ; Purines - therapeutic use ; resistance ; Signal Transduction ; Temozolomide ; Temozolomide - pharmacology ; Temozolomide - therapeutic use ; thymoquinone ; Tumors</subject><ispartof>Environmental toxicology, 2023-01, Vol.38 (1), p.90-100</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Environmental Toxicology published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4444-f07b4c84640c8e9987d25a6958da0ac10ca98ec6d1f6f7bfa5cd991688c6c9c43</citedby><cites>FETCH-LOGICAL-c4444-f07b4c84640c8e9987d25a6958da0ac10ca98ec6d1f6f7bfa5cd991688c6c9c43</cites><orcidid>0000-0001-7010-8701 ; 0000-0002-8669-6402 ; 0000-0003-1667-2410 ; 0000-0001-5712-3448 ; 0000-0003-0460-5624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftox.23664$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftox.23664$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36176197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mai, Ai</creatorcontrib><creatorcontrib>Ye, Shu‐Wen</creatorcontrib><creatorcontrib>Tu, Jia‐Yu</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Kang, Zhan‐Fang</creatorcontrib><creatorcontrib>Yao, Qian‐Ming</creatorcontrib><creatorcontrib>Ting, Wei‐Jen</creatorcontrib><title>Thymoquinone induces apoptosis in temozolomide‐resistant glioblastoma cells via the p38 mitogen‐activated protein kinase signaling pathway</title><title>Environmental toxicology</title><addtitle>Environ Toxicol</addtitle><description>Temozolomide (TMZ) can cross the blood‐brain barrier (BBB) and deliver methyl groups to the purine (guanine) bases of DNA, leading to mispairing during DNA replication and subsequent cell death. However, increased expression of the repair enzyme methyl guanine methyltransferase (MGMT), which removes methyl groups from purine bases, counteracts methylation by TMZ. We evaluated the anticancer potential of thymoquinone (TQ), a hydrophobic flavonoid that inhibits resistance and induces apoptosis in various cancer cells, both in vitro and in vivo. In vitro experiments showed that compared with the Hs683 and M059J cell lines, U251 cells were more sensitive to TMZ. Compared to U251 cells, U251R cells, a TMZ drug‐resistant strain established in this study, are characterized by increased expression of phosphorylated extracellular signal‐regulated kinase (p‐ERK) and MGMT. TQ treatments induced apoptosis in all cell lines. The p38 mitogen‐activated protein kinase signal pathway was mainly activated in U251 and U251R cells; however, p‐ERK and MGMT upregulation could not suppress TQ effects. Furthermore, si‐p38 pretreatment of U251R cells in TQ treatments inhibited cell apoptosis. We speculate that TQ contributed to the phosphorylation and activation of p38, but not of ERK‐induced apoptosis (irrespective of TMZ resistance). In vivo, U251R‐derived tumors subcutaneously inoculated in nude mice exhibited significant tumor volume reduction after TQ or TQ + TMZ cotreatments. High‐performance liquid chromatography assay confirmed the presence of TQ in murine brain tissues. Our findings demonstrate that TQ can effectively cross the BBB and function alone or in combination with TMZ to treat glioblastoma.</description><subject>Animals</subject><subject>Antineoplastic Agents, Alkylating - pharmacology</subject><subject>Apoptosis</subject><subject>Blood-brain barrier</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - metabolism</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Chromatography</subject><subject>Dacarbazine - pharmacology</subject><subject>Dacarbazine - therapeutic use</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA replication</subject><subject>Drug Resistance, Neoplasm</subject><subject>Extracellular signal-regulated kinase</subject><subject>Flavonoids</subject><subject>Glioblastoma</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma cells</subject><subject>Guanine - pharmacology</subject><subject>Guanine - therapeutic use</subject><subject>Hydrophobicity</subject><subject>Inoculation</subject><subject>Kinases</subject><subject>Liquid chromatography</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Neoplasms</subject><subject>O6-methylguanine-DNA methyltransferase</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Purines</subject><subject>Purines - pharmacology</subject><subject>Purines - therapeutic use</subject><subject>resistance</subject><subject>Signal Transduction</subject><subject>Temozolomide</subject><subject>Temozolomide - pharmacology</subject><subject>Temozolomide - therapeutic use</subject><subject>thymoquinone</subject><subject>Tumors</subject><issn>1520-4081</issn><issn>1522-7278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhiMEoqVw4AWQJS5wSGs7tuOcUFVRQKrUyyJxs2adya5LYofY2bKc-gSIZ-RJ8HZLBUj4Ymv8-Z_x_xfFc0aPGaX8JIWvx7xSSjwoDpnkvKx5rR_enmkpqGYHxZMYryiljZLqcXFQKVYr1tSHxffFejuEL7PzwSNxvp0tRgJjGFOILuYKSTiEb6EPg2vx582PCXM9gU9k1buw7CGmMACx2PeRbByQtEYyVpoMLoUV-vwEbHIbSNiScQoJs-Zn5yEiiW7loXd-RUZI62vYPi0eddBHfHa3HxUfz98uzt6XF5fvPpydXpRW5FV2tF4Kq4US1GpsGl23XIJqpG6BgmXUQqPRqpZ1qquXHUjbNg1TWltlGyuqo-LNXneclwO2Fn2aoDfj5AaYtiaAM3_feLc2q7Ax2W9da8mzwqs7hSnbhzGZwcWdCeAxzNHwmlNRVVzJjL78B70K85Q_vqOkEFJJVmXq9Z6yU4hxwu5-GkZ3bbnJMZvbmDP74s_x78nfuWbgZA9cux63_1cyi8tPe8lfotC46Q</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Mai, Ai</creator><creator>Ye, Shu‐Wen</creator><creator>Tu, Jia‐Yu</creator><creator>Gao, Jun</creator><creator>Kang, Zhan‐Fang</creator><creator>Yao, Qian‐Ming</creator><creator>Ting, Wei‐Jen</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7010-8701</orcidid><orcidid>https://orcid.org/0000-0002-8669-6402</orcidid><orcidid>https://orcid.org/0000-0003-1667-2410</orcidid><orcidid>https://orcid.org/0000-0001-5712-3448</orcidid><orcidid>https://orcid.org/0000-0003-0460-5624</orcidid></search><sort><creationdate>202301</creationdate><title>Thymoquinone induces apoptosis in temozolomide‐resistant glioblastoma cells via the p38 mitogen‐activated protein kinase signaling pathway</title><author>Mai, Ai ; Ye, Shu‐Wen ; Tu, Jia‐Yu ; Gao, Jun ; Kang, Zhan‐Fang ; Yao, Qian‐Ming ; Ting, Wei‐Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4444-f07b4c84640c8e9987d25a6958da0ac10ca98ec6d1f6f7bfa5cd991688c6c9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Alkylating - pharmacology</topic><topic>Apoptosis</topic><topic>Blood-brain barrier</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - metabolism</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Chromatography</topic><topic>Dacarbazine - pharmacology</topic><topic>Dacarbazine - therapeutic use</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA replication</topic><topic>Drug Resistance, Neoplasm</topic><topic>Extracellular signal-regulated kinase</topic><topic>Flavonoids</topic><topic>Glioblastoma</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma cells</topic><topic>Guanine - pharmacology</topic><topic>Guanine - therapeutic use</topic><topic>Hydrophobicity</topic><topic>Inoculation</topic><topic>Kinases</topic><topic>Liquid chromatography</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Neoplasms</topic><topic>O6-methylguanine-DNA methyltransferase</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Purines</topic><topic>Purines - pharmacology</topic><topic>Purines - therapeutic use</topic><topic>resistance</topic><topic>Signal Transduction</topic><topic>Temozolomide</topic><topic>Temozolomide - pharmacology</topic><topic>Temozolomide - therapeutic use</topic><topic>thymoquinone</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, Ai</creatorcontrib><creatorcontrib>Ye, Shu‐Wen</creatorcontrib><creatorcontrib>Tu, Jia‐Yu</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Kang, Zhan‐Fang</creatorcontrib><creatorcontrib>Yao, Qian‐Ming</creatorcontrib><creatorcontrib>Ting, Wei‐Jen</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, Ai</au><au>Ye, Shu‐Wen</au><au>Tu, Jia‐Yu</au><au>Gao, Jun</au><au>Kang, Zhan‐Fang</au><au>Yao, Qian‐Ming</au><au>Ting, Wei‐Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thymoquinone induces apoptosis in temozolomide‐resistant glioblastoma cells via the p38 mitogen‐activated protein kinase signaling pathway</atitle><jtitle>Environmental toxicology</jtitle><addtitle>Environ Toxicol</addtitle><date>2023-01</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>90</spage><epage>100</epage><pages>90-100</pages><issn>1520-4081</issn><eissn>1522-7278</eissn><abstract>Temozolomide (TMZ) can cross the blood‐brain barrier (BBB) and deliver methyl groups to the purine (guanine) bases of DNA, leading to mispairing during DNA replication and subsequent cell death. However, increased expression of the repair enzyme methyl guanine methyltransferase (MGMT), which removes methyl groups from purine bases, counteracts methylation by TMZ. We evaluated the anticancer potential of thymoquinone (TQ), a hydrophobic flavonoid that inhibits resistance and induces apoptosis in various cancer cells, both in vitro and in vivo. In vitro experiments showed that compared with the Hs683 and M059J cell lines, U251 cells were more sensitive to TMZ. Compared to U251 cells, U251R cells, a TMZ drug‐resistant strain established in this study, are characterized by increased expression of phosphorylated extracellular signal‐regulated kinase (p‐ERK) and MGMT. TQ treatments induced apoptosis in all cell lines. The p38 mitogen‐activated protein kinase signal pathway was mainly activated in U251 and U251R cells; however, p‐ERK and MGMT upregulation could not suppress TQ effects. Furthermore, si‐p38 pretreatment of U251R cells in TQ treatments inhibited cell apoptosis. We speculate that TQ contributed to the phosphorylation and activation of p38, but not of ERK‐induced apoptosis (irrespective of TMZ resistance). In vivo, U251R‐derived tumors subcutaneously inoculated in nude mice exhibited significant tumor volume reduction after TQ or TQ + TMZ cotreatments. High‐performance liquid chromatography assay confirmed the presence of TQ in murine brain tissues. Our findings demonstrate that TQ can effectively cross the BBB and function alone or in combination with TMZ to treat glioblastoma.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36176197</pmid><doi>10.1002/tox.23664</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7010-8701</orcidid><orcidid>https://orcid.org/0000-0002-8669-6402</orcidid><orcidid>https://orcid.org/0000-0003-1667-2410</orcidid><orcidid>https://orcid.org/0000-0001-5712-3448</orcidid><orcidid>https://orcid.org/0000-0003-0460-5624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-4081
ispartof Environmental toxicology, 2023-01, Vol.38 (1), p.90-100
issn 1520-4081
1522-7278
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10087852
source MEDLINE; Wiley Online Library All Journals
subjects Animals
Antineoplastic Agents, Alkylating - pharmacology
Apoptosis
Blood-brain barrier
Brain
Brain cancer
Brain Neoplasms - metabolism
Cell death
Cell Line, Tumor
Cell lines
Chromatography
Dacarbazine - pharmacology
Dacarbazine - therapeutic use
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA replication
Drug Resistance, Neoplasm
Extracellular signal-regulated kinase
Flavonoids
Glioblastoma
Glioblastoma - pathology
Glioblastoma cells
Guanine - pharmacology
Guanine - therapeutic use
Hydrophobicity
Inoculation
Kinases
Liquid chromatography
Mice
Mice, Nude
Neoplasms
O6-methylguanine-DNA methyltransferase
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Protein kinase
Proteins
Purines
Purines - pharmacology
Purines - therapeutic use
resistance
Signal Transduction
Temozolomide
Temozolomide - pharmacology
Temozolomide - therapeutic use
thymoquinone
Tumors
title Thymoquinone induces apoptosis in temozolomide‐resistant glioblastoma cells via the p38 mitogen‐activated protein kinase signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thymoquinone%20induces%20apoptosis%20in%20temozolomide%E2%80%90resistant%20glioblastoma%20cells%20via%20the%20p38%20mitogen%E2%80%90activated%20protein%20kinase%20signaling%20pathway&rft.jtitle=Environmental%20toxicology&rft.au=Mai,%20Ai&rft.date=2023-01&rft.volume=38&rft.issue=1&rft.spage=90&rft.epage=100&rft.pages=90-100&rft.issn=1520-4081&rft.eissn=1522-7278&rft_id=info:doi/10.1002/tox.23664&rft_dat=%3Cproquest_pubme%3E2720433265%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754456513&rft_id=info:pmid/36176197&rfr_iscdi=true