Crowdsourcing Methods in Addiction Science: Emerging Research and Best Practices

Crowdsourcing platforms such as Amazon Mechanical Turk, Prolific, and Qualtrics Panels have become a dominant form of sampling in recent years. Crowdsourcing enables researchers to effectively and efficiently sample research participants with greater geographic variability, access to hard-to-reach p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental and clinical psychopharmacology 2022-08, Vol.30 (4), p.379-380
Hauptverfasser: Strickland, Justin C., Amlung, Michael, Reed, Derek D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 4
container_start_page 379
container_title Experimental and clinical psychopharmacology
container_volume 30
creator Strickland, Justin C.
Amlung, Michael
Reed, Derek D.
description Crowdsourcing platforms such as Amazon Mechanical Turk, Prolific, and Qualtrics Panels have become a dominant form of sampling in recent years. Crowdsourcing enables researchers to effectively and efficiently sample research participants with greater geographic variability, access to hard-to-reach populations, and reduced costs. These methods have been increasingly used across varied areas of psychological science and essential for research during the COVID-19 pandemic due to their facilitation of remote research. Recent work documents methods for improving data quality, emerging crowdsourcing platforms, and how crowdsourcing data fit within broader research programs. Addiction scientists will benefit from the adoption of best practice guidelines in crowdsourcing as well as developing novel approaches, venues, and applications to advance the field. Public Health Significance The following set of articles in this special issue describes best practice methods and novel applications of crowdsourcing in addiction and psychological science. These articles advance the field and present practical guidelines and open-source resources for researchers using crowdsourcing in future work.
doi_str_mv 10.1037/pha0000582
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10080397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692276918</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3582-fe234e637a37f734b64a82c4d17e42412e3d0fe624982009f973786941ceee8d3</originalsourceid><addsrcrecordid>eNpdkUlvFDEQhS0IIsmQCz8AtZQLAjXYLo8XLlEyCosURMRythx39YyjHruxp4ny7_EwISy-1OF9eq5Xj5CnjL5iFNTrceVofXPNH5ADZkC2nBt4SI6M0kwAaCMpwF7VqBQt40btk8NSrimtquGPyT7MteQMxAG5XOR005U0ZR_isvmIm1XqShNic9p1wW9Cis0XHzB6fNOcrzEvt9hnLOiyXzUuds0Zlk1zmV2FPZYn5FHvhoJHd3NGvr09_7p43158evdhcXrRuvo5b3vkIFCCcqB6BeJKCqe5Fx1TKLhgHKGjPUoujOaUmt4oUFoawTwi6g5m5GTnO05Xa-w8xk12gx1zWLt8a5ML9l8lhpVdph-WUaopVLsZeX7nkNP3qYaw61A8DoOLmKZiuTRczZUCXdHj_9DrerFY8_2iuJKGbakXO8rnVErG_n4bRu22OfunuQo_-3v_e_R3NRV4uQPc6OxYbr3L9cADFj_lXDNtzSxQKywoAz8Be3GfxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692276918</pqid></control><display><type>article</type><title>Crowdsourcing Methods in Addiction Science: Emerging Research and Best Practices</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Strickland, Justin C. ; Amlung, Michael ; Reed, Derek D.</creator><contributor>Reed, Derek D ; Stoops, William W ; Strickland, Justin C ; Amlung, Michael</contributor><creatorcontrib>Strickland, Justin C. ; Amlung, Michael ; Reed, Derek D. ; Reed, Derek D ; Stoops, William W ; Strickland, Justin C ; Amlung, Michael</creatorcontrib><description>Crowdsourcing platforms such as Amazon Mechanical Turk, Prolific, and Qualtrics Panels have become a dominant form of sampling in recent years. Crowdsourcing enables researchers to effectively and efficiently sample research participants with greater geographic variability, access to hard-to-reach populations, and reduced costs. These methods have been increasingly used across varied areas of psychological science and essential for research during the COVID-19 pandemic due to their facilitation of remote research. Recent work documents methods for improving data quality, emerging crowdsourcing platforms, and how crowdsourcing data fit within broader research programs. Addiction scientists will benefit from the adoption of best practice guidelines in crowdsourcing as well as developing novel approaches, venues, and applications to advance the field. Public Health Significance The following set of articles in this special issue describes best practice methods and novel applications of crowdsourcing in addiction and psychological science. These articles advance the field and present practical guidelines and open-source resources for researchers using crowdsourcing in future work.</description><identifier>ISSN: 1064-1297</identifier><identifier>ISBN: 9781433896033</identifier><identifier>ISBN: 1433896036</identifier><identifier>EISSN: 1936-2293</identifier><identifier>DOI: 10.1037/pha0000582</identifier><identifier>PMID: 35862134</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Addiction ; Behavior, Addictive ; Best Practices ; COVID-19 ; Crowdsourcing ; Crowdsourcing - methods ; Experimental Methods ; Experimental Subjects ; Human ; Humans ; Online Experiments ; Pandemics ; Statistical Validity</subject><ispartof>Experimental and clinical psychopharmacology, 2022-08, Vol.30 (4), p.379-380</ispartof><rights>2022 American Psychological Association</rights><rights>2022, American Psychological Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3582-fe234e637a37f734b64a82c4d17e42412e3d0fe624982009f973786941ceee8d3</citedby><orcidid>0000-0003-1077-0394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35862134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reed, Derek D</contributor><contributor>Stoops, William W</contributor><contributor>Strickland, Justin C</contributor><contributor>Amlung, Michael</contributor><creatorcontrib>Strickland, Justin C.</creatorcontrib><creatorcontrib>Amlung, Michael</creatorcontrib><creatorcontrib>Reed, Derek D.</creatorcontrib><title>Crowdsourcing Methods in Addiction Science: Emerging Research and Best Practices</title><title>Experimental and clinical psychopharmacology</title><addtitle>Exp Clin Psychopharmacol</addtitle><description>Crowdsourcing platforms such as Amazon Mechanical Turk, Prolific, and Qualtrics Panels have become a dominant form of sampling in recent years. Crowdsourcing enables researchers to effectively and efficiently sample research participants with greater geographic variability, access to hard-to-reach populations, and reduced costs. These methods have been increasingly used across varied areas of psychological science and essential for research during the COVID-19 pandemic due to their facilitation of remote research. Recent work documents methods for improving data quality, emerging crowdsourcing platforms, and how crowdsourcing data fit within broader research programs. Addiction scientists will benefit from the adoption of best practice guidelines in crowdsourcing as well as developing novel approaches, venues, and applications to advance the field. Public Health Significance The following set of articles in this special issue describes best practice methods and novel applications of crowdsourcing in addiction and psychological science. These articles advance the field and present practical guidelines and open-source resources for researchers using crowdsourcing in future work.</description><subject>Addiction</subject><subject>Behavior, Addictive</subject><subject>Best Practices</subject><subject>COVID-19</subject><subject>Crowdsourcing</subject><subject>Crowdsourcing - methods</subject><subject>Experimental Methods</subject><subject>Experimental Subjects</subject><subject>Human</subject><subject>Humans</subject><subject>Online Experiments</subject><subject>Pandemics</subject><subject>Statistical Validity</subject><issn>1064-1297</issn><issn>1936-2293</issn><isbn>9781433896033</isbn><isbn>1433896036</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUlvFDEQhS0IIsmQCz8AtZQLAjXYLo8XLlEyCosURMRythx39YyjHruxp4ny7_EwISy-1OF9eq5Xj5CnjL5iFNTrceVofXPNH5ADZkC2nBt4SI6M0kwAaCMpwF7VqBQt40btk8NSrimtquGPyT7MteQMxAG5XOR005U0ZR_isvmIm1XqShNic9p1wW9Cis0XHzB6fNOcrzEvt9hnLOiyXzUuds0Zlk1zmV2FPZYn5FHvhoJHd3NGvr09_7p43158evdhcXrRuvo5b3vkIFCCcqB6BeJKCqe5Fx1TKLhgHKGjPUoujOaUmt4oUFoawTwi6g5m5GTnO05Xa-w8xk12gx1zWLt8a5ML9l8lhpVdph-WUaopVLsZeX7nkNP3qYaw61A8DoOLmKZiuTRczZUCXdHj_9DrerFY8_2iuJKGbakXO8rnVErG_n4bRu22OfunuQo_-3v_e_R3NRV4uQPc6OxYbr3L9cADFj_lXDNtzSxQKywoAz8Be3GfxQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Strickland, Justin C.</creator><creator>Amlung, Michael</creator><creator>Reed, Derek D.</creator><general>American Psychological Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1077-0394</orcidid></search><sort><creationdate>20220801</creationdate><title>Crowdsourcing Methods in Addiction Science: Emerging Research and Best Practices</title><author>Strickland, Justin C. ; Amlung, Michael ; Reed, Derek D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3582-fe234e637a37f734b64a82c4d17e42412e3d0fe624982009f973786941ceee8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addiction</topic><topic>Behavior, Addictive</topic><topic>Best Practices</topic><topic>COVID-19</topic><topic>Crowdsourcing</topic><topic>Crowdsourcing - methods</topic><topic>Experimental Methods</topic><topic>Experimental Subjects</topic><topic>Human</topic><topic>Humans</topic><topic>Online Experiments</topic><topic>Pandemics</topic><topic>Statistical Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strickland, Justin C.</creatorcontrib><creatorcontrib>Amlung, Michael</creatorcontrib><creatorcontrib>Reed, Derek D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental and clinical psychopharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strickland, Justin C.</au><au>Amlung, Michael</au><au>Reed, Derek D.</au><au>Reed, Derek D</au><au>Stoops, William W</au><au>Strickland, Justin C</au><au>Amlung, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowdsourcing Methods in Addiction Science: Emerging Research and Best Practices</atitle><jtitle>Experimental and clinical psychopharmacology</jtitle><addtitle>Exp Clin Psychopharmacol</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>30</volume><issue>4</issue><spage>379</spage><epage>380</epage><pages>379-380</pages><issn>1064-1297</issn><eissn>1936-2293</eissn><isbn>9781433896033</isbn><isbn>1433896036</isbn><abstract>Crowdsourcing platforms such as Amazon Mechanical Turk, Prolific, and Qualtrics Panels have become a dominant form of sampling in recent years. Crowdsourcing enables researchers to effectively and efficiently sample research participants with greater geographic variability, access to hard-to-reach populations, and reduced costs. These methods have been increasingly used across varied areas of psychological science and essential for research during the COVID-19 pandemic due to their facilitation of remote research. Recent work documents methods for improving data quality, emerging crowdsourcing platforms, and how crowdsourcing data fit within broader research programs. Addiction scientists will benefit from the adoption of best practice guidelines in crowdsourcing as well as developing novel approaches, venues, and applications to advance the field. Public Health Significance The following set of articles in this special issue describes best practice methods and novel applications of crowdsourcing in addiction and psychological science. These articles advance the field and present practical guidelines and open-source resources for researchers using crowdsourcing in future work.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>35862134</pmid><doi>10.1037/pha0000582</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0003-1077-0394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-1297
ispartof Experimental and clinical psychopharmacology, 2022-08, Vol.30 (4), p.379-380
issn 1064-1297
1936-2293
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10080397
source MEDLINE; EBSCOhost APA PsycARTICLES
subjects Addiction
Behavior, Addictive
Best Practices
COVID-19
Crowdsourcing
Crowdsourcing - methods
Experimental Methods
Experimental Subjects
Human
Humans
Online Experiments
Pandemics
Statistical Validity
title Crowdsourcing Methods in Addiction Science: Emerging Research and Best Practices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowdsourcing%20Methods%20in%20Addiction%20Science:%20Emerging%20Research%20and%20Best%20Practices&rft.jtitle=Experimental%20and%20clinical%20psychopharmacology&rft.au=Strickland,%20Justin%20C.&rft.date=2022-08-01&rft.volume=30&rft.issue=4&rft.spage=379&rft.epage=380&rft.pages=379-380&rft.issn=1064-1297&rft.eissn=1936-2293&rft.isbn=9781433896033&rft.isbn_list=1433896036&rft_id=info:doi/10.1037/pha0000582&rft_dat=%3Cproquest_pubme%3E2692276918%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692276918&rft_id=info:pmid/35862134&rfr_iscdi=true