Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast
Abstract Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric h...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2023-04, Vol.223 (4) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Genetics (Austin) |
container_volume | 223 |
creator | Tran Nguyen, Tra My Munhoven, Arno Samel-Pommerencke, Anke Kshirsagar, Rucha Cuomo, Alessandro Bonaldi, Tiziana Ehrenhofer-Murray, Ann E |
description | Abstract
Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components. |
doi_str_mv | 10.1093/genetics/iyad028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10078908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/genetics/iyad028</oup_id><sourcerecordid>3050670003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-e1476e7734853b987712c6297b6b68a8c143ee7f9ed4f8580289d229f739db2e3</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa0KVCjtvSdkiQtSFdaOE3-cqtWKQiWgPcDZcpLJriFrb22nUv57THdBlAsn2-PfPM2bh9BXSs4oUWy2BAfJtnFmJ9ORUn5Ah1RVrCg5o3uv7gfoU4z3hBCuavkRHTAuKeFCHaLmGtJqGkyy3mHf48X5ze9iPltEqHCumLC0zjrAtGLYuA4PU_z3ZBQHWI65ESJ-yKXk25UPgGMyjR1smrB1eAIT02e035shwpfdeYTufpzfLi6Lq18XPxfzq6KtOE0F0EpwEIJVsmaNkkLQsuWlEg1vuDSyzSMAiF5BV_Wyltmu6spS9YKprimBHaHvW93N2Kyha8GlYAa9CXZtwqS9sfr_H2dXeun_akqIkIrIrHC6Uwj-zwgx6bWNLQyDceDHqEshFKt4TWhGT96g934MLvvTjNR5t3nZLFNkS7XBxxigf5mGEv2UoH5OUO8SzC3Hr128NDxHloFvW8CPm_flHgEOv6gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050670003</pqid></control><display><type>article</type><title>Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Tran Nguyen, Tra My ; Munhoven, Arno ; Samel-Pommerencke, Anke ; Kshirsagar, Rucha ; Cuomo, Alessandro ; Bonaldi, Tiziana ; Ehrenhofer-Murray, Ann E</creator><contributor>Lacefield, S</contributor><creatorcontrib>Tran Nguyen, Tra My ; Munhoven, Arno ; Samel-Pommerencke, Anke ; Kshirsagar, Rucha ; Cuomo, Alessandro ; Bonaldi, Tiziana ; Ehrenhofer-Murray, Ann E ; Lacefield, S</creatorcontrib><description>Abstract
Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyad028</identifier><identifier>PMID: 36810679</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Arginine - genetics ; Centromere protein A ; Centromere Protein A - genetics ; Centromere Protein A - metabolism ; Chromatin ; Chromosomal Proteins, Non-Histone - metabolism ; Defects ; DNA-Binding Proteins - metabolism ; Genetic suppression ; Histone H3 ; Histone methyltransferase ; Histones ; Histones - metabolism ; Investigation ; Kinetochores - metabolism ; Lysine ; Lysine - genetics ; Methylation ; Mutation ; Nuclear Proteins - genetics ; Nucleosomes - genetics ; Post-translation ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Stability ; Structure-function relationships ; Yeast ; Yeasts</subject><ispartof>Genetics (Austin), 2023-04, Vol.223 (4)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Genetics Society of America. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Genetics Society of America.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-e1476e7734853b987712c6297b6b68a8c143ee7f9ed4f8580289d229f739db2e3</citedby><cites>FETCH-LOGICAL-c461t-e1476e7734853b987712c6297b6b68a8c143ee7f9ed4f8580289d229f739db2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36810679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lacefield, S</contributor><creatorcontrib>Tran Nguyen, Tra My</creatorcontrib><creatorcontrib>Munhoven, Arno</creatorcontrib><creatorcontrib>Samel-Pommerencke, Anke</creatorcontrib><creatorcontrib>Kshirsagar, Rucha</creatorcontrib><creatorcontrib>Cuomo, Alessandro</creatorcontrib><creatorcontrib>Bonaldi, Tiziana</creatorcontrib><creatorcontrib>Ehrenhofer-Murray, Ann E</creatorcontrib><title>Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Abstract
Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.</description><subject>Arginine - genetics</subject><subject>Centromere protein A</subject><subject>Centromere Protein A - genetics</subject><subject>Centromere Protein A - metabolism</subject><subject>Chromatin</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Defects</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genetic suppression</subject><subject>Histone H3</subject><subject>Histone methyltransferase</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Investigation</subject><subject>Kinetochores - metabolism</subject><subject>Lysine</subject><subject>Lysine - genetics</subject><subject>Methylation</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nucleosomes - genetics</subject><subject>Post-translation</subject><subject>Protein Processing, Post-Translational</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stability</subject><subject>Structure-function relationships</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1P3DAQxa0KVCjtvSdkiQtSFdaOE3-cqtWKQiWgPcDZcpLJriFrb22nUv57THdBlAsn2-PfPM2bh9BXSs4oUWy2BAfJtnFmJ9ORUn5Ah1RVrCg5o3uv7gfoU4z3hBCuavkRHTAuKeFCHaLmGtJqGkyy3mHf48X5ze9iPltEqHCumLC0zjrAtGLYuA4PU_z3ZBQHWI65ESJ-yKXk25UPgGMyjR1smrB1eAIT02e035shwpfdeYTufpzfLi6Lq18XPxfzq6KtOE0F0EpwEIJVsmaNkkLQsuWlEg1vuDSyzSMAiF5BV_Wyltmu6spS9YKprimBHaHvW93N2Kyha8GlYAa9CXZtwqS9sfr_H2dXeun_akqIkIrIrHC6Uwj-zwgx6bWNLQyDceDHqEshFKt4TWhGT96g934MLvvTjNR5t3nZLFNkS7XBxxigf5mGEv2UoH5OUO8SzC3Hr128NDxHloFvW8CPm_flHgEOv6gg</recordid><startdate>20230406</startdate><enddate>20230406</enddate><creator>Tran Nguyen, Tra My</creator><creator>Munhoven, Arno</creator><creator>Samel-Pommerencke, Anke</creator><creator>Kshirsagar, Rucha</creator><creator>Cuomo, Alessandro</creator><creator>Bonaldi, Tiziana</creator><creator>Ehrenhofer-Murray, Ann E</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230406</creationdate><title>Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast</title><author>Tran Nguyen, Tra My ; Munhoven, Arno ; Samel-Pommerencke, Anke ; Kshirsagar, Rucha ; Cuomo, Alessandro ; Bonaldi, Tiziana ; Ehrenhofer-Murray, Ann E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-e1476e7734853b987712c6297b6b68a8c143ee7f9ed4f8580289d229f739db2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arginine - genetics</topic><topic>Centromere protein A</topic><topic>Centromere Protein A - genetics</topic><topic>Centromere Protein A - metabolism</topic><topic>Chromatin</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Defects</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genetic suppression</topic><topic>Histone H3</topic><topic>Histone methyltransferase</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Investigation</topic><topic>Kinetochores - metabolism</topic><topic>Lysine</topic><topic>Lysine - genetics</topic><topic>Methylation</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nucleosomes - genetics</topic><topic>Post-translation</topic><topic>Protein Processing, Post-Translational</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stability</topic><topic>Structure-function relationships</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran Nguyen, Tra My</creatorcontrib><creatorcontrib>Munhoven, Arno</creatorcontrib><creatorcontrib>Samel-Pommerencke, Anke</creatorcontrib><creatorcontrib>Kshirsagar, Rucha</creatorcontrib><creatorcontrib>Cuomo, Alessandro</creatorcontrib><creatorcontrib>Bonaldi, Tiziana</creatorcontrib><creatorcontrib>Ehrenhofer-Murray, Ann E</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran Nguyen, Tra My</au><au>Munhoven, Arno</au><au>Samel-Pommerencke, Anke</au><au>Kshirsagar, Rucha</au><au>Cuomo, Alessandro</au><au>Bonaldi, Tiziana</au><au>Ehrenhofer-Murray, Ann E</au><au>Lacefield, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2023-04-06</date><risdate>2023</risdate><volume>223</volume><issue>4</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Abstract
Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>36810679</pmid><doi>10.1093/genetics/iyad028</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2023-04, Vol.223 (4) |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10078908 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Arginine - genetics Centromere protein A Centromere Protein A - genetics Centromere Protein A - metabolism Chromatin Chromosomal Proteins, Non-Histone - metabolism Defects DNA-Binding Proteins - metabolism Genetic suppression Histone H3 Histone methyltransferase Histones Histones - metabolism Investigation Kinetochores - metabolism Lysine Lysine - genetics Methylation Mutation Nuclear Proteins - genetics Nucleosomes - genetics Post-translation Protein Processing, Post-Translational Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Stability Structure-function relationships Yeast Yeasts |
title | Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methylation%20of%20CENP-A/Cse4%20on%20arginine%20143%20and%20lysine%20131%20regulates%20kinetochore%20stability%20in%20yeast&rft.jtitle=Genetics%20(Austin)&rft.au=Tran%20Nguyen,%20Tra%20My&rft.date=2023-04-06&rft.volume=223&rft.issue=4&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyad028&rft_dat=%3Cproquest_pubme%3E3050670003%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050670003&rft_id=info:pmid/36810679&rft_oup_id=10.1093/genetics/iyad028&rfr_iscdi=true |