Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast

Abstract Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2023-04, Vol.223 (4)
Hauptverfasser: Tran Nguyen, Tra My, Munhoven, Arno, Samel-Pommerencke, Anke, Kshirsagar, Rucha, Cuomo, Alessandro, Bonaldi, Tiziana, Ehrenhofer-Murray, Ann E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Genetics (Austin)
container_volume 223
creator Tran Nguyen, Tra My
Munhoven, Arno
Samel-Pommerencke, Anke
Kshirsagar, Rucha
Cuomo, Alessandro
Bonaldi, Tiziana
Ehrenhofer-Murray, Ann E
description Abstract Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.
doi_str_mv 10.1093/genetics/iyad028
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10078908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/genetics/iyad028</oup_id><sourcerecordid>3050670003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-e1476e7734853b987712c6297b6b68a8c143ee7f9ed4f8580289d229f739db2e3</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa0KVCjtvSdkiQtSFdaOE3-cqtWKQiWgPcDZcpLJriFrb22nUv57THdBlAsn2-PfPM2bh9BXSs4oUWy2BAfJtnFmJ9ORUn5Ah1RVrCg5o3uv7gfoU4z3hBCuavkRHTAuKeFCHaLmGtJqGkyy3mHf48X5ze9iPltEqHCumLC0zjrAtGLYuA4PU_z3ZBQHWI65ESJ-yKXk25UPgGMyjR1smrB1eAIT02e035shwpfdeYTufpzfLi6Lq18XPxfzq6KtOE0F0EpwEIJVsmaNkkLQsuWlEg1vuDSyzSMAiF5BV_Wyltmu6spS9YKprimBHaHvW93N2Kyha8GlYAa9CXZtwqS9sfr_H2dXeun_akqIkIrIrHC6Uwj-zwgx6bWNLQyDceDHqEshFKt4TWhGT96g934MLvvTjNR5t3nZLFNkS7XBxxigf5mGEv2UoH5OUO8SzC3Hr128NDxHloFvW8CPm_flHgEOv6gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050670003</pqid></control><display><type>article</type><title>Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Tran Nguyen, Tra My ; Munhoven, Arno ; Samel-Pommerencke, Anke ; Kshirsagar, Rucha ; Cuomo, Alessandro ; Bonaldi, Tiziana ; Ehrenhofer-Murray, Ann E</creator><contributor>Lacefield, S</contributor><creatorcontrib>Tran Nguyen, Tra My ; Munhoven, Arno ; Samel-Pommerencke, Anke ; Kshirsagar, Rucha ; Cuomo, Alessandro ; Bonaldi, Tiziana ; Ehrenhofer-Murray, Ann E ; Lacefield, S</creatorcontrib><description>Abstract Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/iyad028</identifier><identifier>PMID: 36810679</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Arginine - genetics ; Centromere protein A ; Centromere Protein A - genetics ; Centromere Protein A - metabolism ; Chromatin ; Chromosomal Proteins, Non-Histone - metabolism ; Defects ; DNA-Binding Proteins - metabolism ; Genetic suppression ; Histone H3 ; Histone methyltransferase ; Histones ; Histones - metabolism ; Investigation ; Kinetochores - metabolism ; Lysine ; Lysine - genetics ; Methylation ; Mutation ; Nuclear Proteins - genetics ; Nucleosomes - genetics ; Post-translation ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Stability ; Structure-function relationships ; Yeast ; Yeasts</subject><ispartof>Genetics (Austin), 2023-04, Vol.223 (4)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Genetics Society of America. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Genetics Society of America.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-e1476e7734853b987712c6297b6b68a8c143ee7f9ed4f8580289d229f739db2e3</citedby><cites>FETCH-LOGICAL-c461t-e1476e7734853b987712c6297b6b68a8c143ee7f9ed4f8580289d229f739db2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36810679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lacefield, S</contributor><creatorcontrib>Tran Nguyen, Tra My</creatorcontrib><creatorcontrib>Munhoven, Arno</creatorcontrib><creatorcontrib>Samel-Pommerencke, Anke</creatorcontrib><creatorcontrib>Kshirsagar, Rucha</creatorcontrib><creatorcontrib>Cuomo, Alessandro</creatorcontrib><creatorcontrib>Bonaldi, Tiziana</creatorcontrib><creatorcontrib>Ehrenhofer-Murray, Ann E</creatorcontrib><title>Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Abstract Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.</description><subject>Arginine - genetics</subject><subject>Centromere protein A</subject><subject>Centromere Protein A - genetics</subject><subject>Centromere Protein A - metabolism</subject><subject>Chromatin</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Defects</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genetic suppression</subject><subject>Histone H3</subject><subject>Histone methyltransferase</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Investigation</subject><subject>Kinetochores - metabolism</subject><subject>Lysine</subject><subject>Lysine - genetics</subject><subject>Methylation</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nucleosomes - genetics</subject><subject>Post-translation</subject><subject>Protein Processing, Post-Translational</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stability</subject><subject>Structure-function relationships</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1P3DAQxa0KVCjtvSdkiQtSFdaOE3-cqtWKQiWgPcDZcpLJriFrb22nUv57THdBlAsn2-PfPM2bh9BXSs4oUWy2BAfJtnFmJ9ORUn5Ah1RVrCg5o3uv7gfoU4z3hBCuavkRHTAuKeFCHaLmGtJqGkyy3mHf48X5ze9iPltEqHCumLC0zjrAtGLYuA4PU_z3ZBQHWI65ESJ-yKXk25UPgGMyjR1smrB1eAIT02e035shwpfdeYTufpzfLi6Lq18XPxfzq6KtOE0F0EpwEIJVsmaNkkLQsuWlEg1vuDSyzSMAiF5BV_Wyltmu6spS9YKprimBHaHvW93N2Kyha8GlYAa9CXZtwqS9sfr_H2dXeun_akqIkIrIrHC6Uwj-zwgx6bWNLQyDceDHqEshFKt4TWhGT96g934MLvvTjNR5t3nZLFNkS7XBxxigf5mGEv2UoH5OUO8SzC3Hr128NDxHloFvW8CPm_flHgEOv6gg</recordid><startdate>20230406</startdate><enddate>20230406</enddate><creator>Tran Nguyen, Tra My</creator><creator>Munhoven, Arno</creator><creator>Samel-Pommerencke, Anke</creator><creator>Kshirsagar, Rucha</creator><creator>Cuomo, Alessandro</creator><creator>Bonaldi, Tiziana</creator><creator>Ehrenhofer-Murray, Ann E</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230406</creationdate><title>Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast</title><author>Tran Nguyen, Tra My ; Munhoven, Arno ; Samel-Pommerencke, Anke ; Kshirsagar, Rucha ; Cuomo, Alessandro ; Bonaldi, Tiziana ; Ehrenhofer-Murray, Ann E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-e1476e7734853b987712c6297b6b68a8c143ee7f9ed4f8580289d229f739db2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arginine - genetics</topic><topic>Centromere protein A</topic><topic>Centromere Protein A - genetics</topic><topic>Centromere Protein A - metabolism</topic><topic>Chromatin</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Defects</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genetic suppression</topic><topic>Histone H3</topic><topic>Histone methyltransferase</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Investigation</topic><topic>Kinetochores - metabolism</topic><topic>Lysine</topic><topic>Lysine - genetics</topic><topic>Methylation</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nucleosomes - genetics</topic><topic>Post-translation</topic><topic>Protein Processing, Post-Translational</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stability</topic><topic>Structure-function relationships</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran Nguyen, Tra My</creatorcontrib><creatorcontrib>Munhoven, Arno</creatorcontrib><creatorcontrib>Samel-Pommerencke, Anke</creatorcontrib><creatorcontrib>Kshirsagar, Rucha</creatorcontrib><creatorcontrib>Cuomo, Alessandro</creatorcontrib><creatorcontrib>Bonaldi, Tiziana</creatorcontrib><creatorcontrib>Ehrenhofer-Murray, Ann E</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran Nguyen, Tra My</au><au>Munhoven, Arno</au><au>Samel-Pommerencke, Anke</au><au>Kshirsagar, Rucha</au><au>Cuomo, Alessandro</au><au>Bonaldi, Tiziana</au><au>Ehrenhofer-Murray, Ann E</au><au>Lacefield, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2023-04-06</date><risdate>2023</risdate><volume>223</volume><issue>4</issue><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>Abstract Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>36810679</pmid><doi>10.1093/genetics/iyad028</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2023-04, Vol.223 (4)
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10078908
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Arginine - genetics
Centromere protein A
Centromere Protein A - genetics
Centromere Protein A - metabolism
Chromatin
Chromosomal Proteins, Non-Histone - metabolism
Defects
DNA-Binding Proteins - metabolism
Genetic suppression
Histone H3
Histone methyltransferase
Histones
Histones - metabolism
Investigation
Kinetochores - metabolism
Lysine
Lysine - genetics
Methylation
Mutation
Nuclear Proteins - genetics
Nucleosomes - genetics
Post-translation
Protein Processing, Post-Translational
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Stability
Structure-function relationships
Yeast
Yeasts
title Methylation of CENP-A/Cse4 on arginine 143 and lysine 131 regulates kinetochore stability in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methylation%20of%20CENP-A/Cse4%20on%20arginine%20143%20and%20lysine%20131%20regulates%20kinetochore%20stability%20in%20yeast&rft.jtitle=Genetics%20(Austin)&rft.au=Tran%20Nguyen,%20Tra%20My&rft.date=2023-04-06&rft.volume=223&rft.issue=4&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1093/genetics/iyad028&rft_dat=%3Cproquest_pubme%3E3050670003%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050670003&rft_id=info:pmid/36810679&rft_oup_id=10.1093/genetics/iyad028&rfr_iscdi=true