Intercalant-induced V t2g orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries

Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-03, Vol.120 (13), p.e2217208120-e2217208120
Hauptverfasser: Wang, Yixiu, Wei, Shiqiang, Qi, Zheng-Hang, Chen, Shuangming, Zhu, Kefu, Ding, Honghe, Cao, Yuyang, Zhou, Quan, Wang, Changda, Zhang, Pengjun, Guo, Xin, Yang, Xiya, Wu, Xiaojun, Song, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2217208120
container_issue 13
container_start_page e2217208120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Wang, Yixiu
Wei, Shiqiang
Qi, Zheng-Hang
Chen, Shuangming
Zhu, Kefu
Ding, Honghe
Cao, Yuyang
Zhou, Quan
Wang, Changda
Zhang, Pengjun
Guo, Xin
Yang, Xiya
Wu, Xiaojun
Song, Li
description Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g−1 at 0.1 A g−1, especially excellent rate capability (101.0 mA h g−1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.
doi_str_mv 10.1073/pnas.2217208120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10068788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794133244</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-8934d9c0aea536238e909acccc67e2505e256fa7d07259549641ac9e7acf62d73</originalsourceid><addsrcrecordid>eNpdUMtuFDEQtBARWQJnrpa4cJnQfowfJ4QiHpEicUm4jnpt766jWXuwPcvj6-OIXKAPXYeurlIVIW8YXDLQ4v2SsF5yzjQHwzg8IxsGlg1KWnhONgBcD0ZyeU5e1noPAHY08IKcC2UlCKE35HSdWigOZ0xtiMmvLnj6nTa-p7lsY8OZZufWBVvMicZET5jQx_VI86_oA3XYDrljyz-xeLrD2gZ3wLKPaU_xxxryWumfmNzw-L_F1t1iqK_I2Q7nGl4_4QW5-_zp9urrcPPty_XVx5th4Zq3wVghvXWAAUehuDDBgkXXR-nARxj7UjvUHjQf7SitkgydDRrdTnGvxQX58Fd3WbfH4F1IreA8LSUesfyeMsbp30uKh2mfTxMDUEYb0xXePSmU3OPUNh1jdWHuhT1mm7g2loteq-rUt_9R7_NaUs_XWVYyIbiU4gFdSIcV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794133244</pqid></control><display><type>article</type><title>Intercalant-induced V t2g orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yixiu ; Wei, Shiqiang ; Qi, Zheng-Hang ; Chen, Shuangming ; Zhu, Kefu ; Ding, Honghe ; Cao, Yuyang ; Zhou, Quan ; Wang, Changda ; Zhang, Pengjun ; Guo, Xin ; Yang, Xiya ; Wu, Xiaojun ; Song, Li</creator><creatorcontrib>Wang, Yixiu ; Wei, Shiqiang ; Qi, Zheng-Hang ; Chen, Shuangming ; Zhu, Kefu ; Ding, Honghe ; Cao, Yuyang ; Zhou, Quan ; Wang, Changda ; Zhang, Pengjun ; Guo, Xin ; Yang, Xiya ; Wu, Xiaojun ; Song, Li</creatorcontrib><description>Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g−1 at 0.1 A g−1, especially excellent rate capability (101.0 mA h g−1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2217208120</identifier><identifier>PMID: 36940337</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Absorption spectra ; Batteries ; Cathodes ; Charging ; Electrode materials ; Electron transfer ; Electron transitions ; Interlayers ; Ion migration ; Physical Sciences ; Rechargeable batteries ; Soft x rays ; Synchrotron radiation ; Synchrotrons ; Vanadium ; Vanadium oxides ; Vanadium pentoxide ; X ray absorption ; X-ray diffraction ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-03, Vol.120 (13), p.e2217208120-e2217208120</ispartof><rights>Copyright National Academy of Sciences Mar 28, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068788/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068788/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Wang, Yixiu</creatorcontrib><creatorcontrib>Wei, Shiqiang</creatorcontrib><creatorcontrib>Qi, Zheng-Hang</creatorcontrib><creatorcontrib>Chen, Shuangming</creatorcontrib><creatorcontrib>Zhu, Kefu</creatorcontrib><creatorcontrib>Ding, Honghe</creatorcontrib><creatorcontrib>Cao, Yuyang</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Wang, Changda</creatorcontrib><creatorcontrib>Zhang, Pengjun</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Yang, Xiya</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Song, Li</creatorcontrib><title>Intercalant-induced V t2g orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g−1 at 0.1 A g−1, especially excellent rate capability (101.0 mA h g−1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.</description><subject>Absorption spectra</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Charging</subject><subject>Electrode materials</subject><subject>Electron transfer</subject><subject>Electron transitions</subject><subject>Interlayers</subject><subject>Ion migration</subject><subject>Physical Sciences</subject><subject>Rechargeable batteries</subject><subject>Soft x rays</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Vanadium</subject><subject>Vanadium oxides</subject><subject>Vanadium pentoxide</subject><subject>X ray absorption</subject><subject>X-ray diffraction</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdUMtuFDEQtBARWQJnrpa4cJnQfowfJ4QiHpEicUm4jnpt766jWXuwPcvj6-OIXKAPXYeurlIVIW8YXDLQ4v2SsF5yzjQHwzg8IxsGlg1KWnhONgBcD0ZyeU5e1noPAHY08IKcC2UlCKE35HSdWigOZ0xtiMmvLnj6nTa-p7lsY8OZZufWBVvMicZET5jQx_VI86_oA3XYDrljyz-xeLrD2gZ3wLKPaU_xxxryWumfmNzw-L_F1t1iqK_I2Q7nGl4_4QW5-_zp9urrcPPty_XVx5th4Zq3wVghvXWAAUehuDDBgkXXR-nARxj7UjvUHjQf7SitkgydDRrdTnGvxQX58Fd3WbfH4F1IreA8LSUesfyeMsbp30uKh2mfTxMDUEYb0xXePSmU3OPUNh1jdWHuhT1mm7g2loteq-rUt_9R7_NaUs_XWVYyIbiU4gFdSIcV</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Wang, Yixiu</creator><creator>Wei, Shiqiang</creator><creator>Qi, Zheng-Hang</creator><creator>Chen, Shuangming</creator><creator>Zhu, Kefu</creator><creator>Ding, Honghe</creator><creator>Cao, Yuyang</creator><creator>Zhou, Quan</creator><creator>Wang, Changda</creator><creator>Zhang, Pengjun</creator><creator>Guo, Xin</creator><creator>Yang, Xiya</creator><creator>Wu, Xiaojun</creator><creator>Song, Li</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230328</creationdate><title>Intercalant-induced V t2g orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries</title><author>Wang, Yixiu ; Wei, Shiqiang ; Qi, Zheng-Hang ; Chen, Shuangming ; Zhu, Kefu ; Ding, Honghe ; Cao, Yuyang ; Zhou, Quan ; Wang, Changda ; Zhang, Pengjun ; Guo, Xin ; Yang, Xiya ; Wu, Xiaojun ; Song, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-8934d9c0aea536238e909acccc67e2505e256fa7d07259549641ac9e7acf62d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectra</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Charging</topic><topic>Electrode materials</topic><topic>Electron transfer</topic><topic>Electron transitions</topic><topic>Interlayers</topic><topic>Ion migration</topic><topic>Physical Sciences</topic><topic>Rechargeable batteries</topic><topic>Soft x rays</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Vanadium</topic><topic>Vanadium oxides</topic><topic>Vanadium pentoxide</topic><topic>X ray absorption</topic><topic>X-ray diffraction</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yixiu</creatorcontrib><creatorcontrib>Wei, Shiqiang</creatorcontrib><creatorcontrib>Qi, Zheng-Hang</creatorcontrib><creatorcontrib>Chen, Shuangming</creatorcontrib><creatorcontrib>Zhu, Kefu</creatorcontrib><creatorcontrib>Ding, Honghe</creatorcontrib><creatorcontrib>Cao, Yuyang</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Wang, Changda</creatorcontrib><creatorcontrib>Zhang, Pengjun</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Yang, Xiya</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Song, Li</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yixiu</au><au>Wei, Shiqiang</au><au>Qi, Zheng-Hang</au><au>Chen, Shuangming</au><au>Zhu, Kefu</au><au>Ding, Honghe</au><au>Cao, Yuyang</au><au>Zhou, Quan</au><au>Wang, Changda</au><au>Zhang, Pengjun</au><au>Guo, Xin</au><au>Yang, Xiya</au><au>Wu, Xiaojun</au><au>Song, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercalant-induced V t2g orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2023-03-28</date><risdate>2023</risdate><volume>120</volume><issue>13</issue><spage>e2217208120</spage><epage>e2217208120</epage><pages>e2217208120-e2217208120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g−1 at 0.1 A g−1, especially excellent rate capability (101.0 mA h g−1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>36940337</pmid><doi>10.1073/pnas.2217208120</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-03, Vol.120 (13), p.e2217208120-e2217208120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10068788
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Absorption spectra
Batteries
Cathodes
Charging
Electrode materials
Electron transfer
Electron transitions
Interlayers
Ion migration
Physical Sciences
Rechargeable batteries
Soft x rays
Synchrotron radiation
Synchrotrons
Vanadium
Vanadium oxides
Vanadium pentoxide
X ray absorption
X-ray diffraction
Zinc
title Intercalant-induced V t2g orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercalant-induced%20V%20t2g%20orbital%20occupation%20in%20vanadium%20oxide%20cathode%20toward%20fast-charging%20aqueous%20zinc-ion%20batteries&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Yixiu&rft.date=2023-03-28&rft.volume=120&rft.issue=13&rft.spage=e2217208120&rft.epage=e2217208120&rft.pages=e2217208120-e2217208120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2217208120&rft_dat=%3Cproquest_pubme%3E2794133244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794133244&rft_id=info:pmid/36940337&rfr_iscdi=true