Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1

The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2023-04, Vol.114 (4), p.1541-1555
Hauptverfasser: Thamrongwaranggoon, Ubonrat, Kuribayashi, Kanji, Araki, Hirotaka, Hino, Yuko, Koga, Tomoaki, Seubwai, Wunchana, Wongkham, Sopit, Nakao, Mitsuyoshi, Hino, Shinjiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1555
container_issue 4
container_start_page 1541
container_title Cancer science
container_volume 114
creator Thamrongwaranggoon, Ubonrat
Kuribayashi, Kanji
Araki, Hirotaka
Hino, Yuko
Koga, Tomoaki
Seubwai, Wunchana
Wongkham, Sopit
Nakao, Mitsuyoshi
Hino, Shinjiro
description The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long‐term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short‐term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA‐induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA‐sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial–mesenchymal transition (EMT), including thrombospondin‐1 (THBS1), which encodes a pro‐EMT‐secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA‐induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression. This paper uncovers an intimate link between metabolic reprogramming and the malignant behavior of cholangiocarcinoma cells under lactic acidosis.
doi_str_mv 10.1111/cas.15699
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10067391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758110733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5349-4c854817332840d8fa479d4d02539b7806866378ba3f67a2b463db5b882c79103</originalsourceid><addsrcrecordid>eNp1kctu1DAYhSNERUthwQsgS2xgMa0dO76sUDXiJo3UBbC2HNvJuEr8Bzspmh0b9jwjT4Kn01aAVG98-T8dneNTVS8IPiNlnVuTz0jDlXpUnRDK1EpgzB_fnMVKYVofV09zvsKYcqbYk-qY8obXDOOT6ufG2DlYZGxwkENGIbrF-oxGP5sWhv0oOjRtfYR5N5Vr8lOCPplxDLEvOLJbGEzsA1iTbIgwGmT9MGR0HQyatx4tU_L9Mpg5QETQlbcEYwt5guhC_P3jF3lWHXVmyP757X5afX3_7sv642pz-eHT-mKzss0-FrOyYZIISmvJsJOdYUI55nDdUNUKibnknArZGtpxYeqWcerappWytkIRTE-rtwfdaWlH76yPczKDnlIYTdppMEH_O4lhq3u41qR8qKCKFIXXtwoJvi0-z3oMeR_XRA9L1rVoJCG4WCzoq__QK1hSLPkKpYpNJRpeqDcHyibIOfnu3g3Bet-uLu3qm3YL-_Jv-_fkXZ0FOD8A38Pgdw8r6fXF54PkH7tbsbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793789756</pqid></control><display><type>article</type><title>Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Thamrongwaranggoon, Ubonrat ; Kuribayashi, Kanji ; Araki, Hirotaka ; Hino, Yuko ; Koga, Tomoaki ; Seubwai, Wunchana ; Wongkham, Sopit ; Nakao, Mitsuyoshi ; Hino, Shinjiro</creator><creatorcontrib>Thamrongwaranggoon, Ubonrat ; Kuribayashi, Kanji ; Araki, Hirotaka ; Hino, Yuko ; Koga, Tomoaki ; Seubwai, Wunchana ; Wongkham, Sopit ; Nakao, Mitsuyoshi ; Hino, Shinjiro</creatorcontrib><description>The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long‐term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short‐term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA‐induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA‐sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial–mesenchymal transition (EMT), including thrombospondin‐1 (THBS1), which encodes a pro‐EMT‐secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA‐induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression. This paper uncovers an intimate link between metabolic reprogramming and the malignant behavior of cholangiocarcinoma cells under lactic acidosis.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.15699</identifier><identifier>PMID: 36562400</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Acidification ; Acidosis ; Acidosis, Lactic - genetics ; Antibodies ; Bile Duct Neoplasms - pathology ; Bile Ducts, Intrahepatic - metabolism ; Cancer ; Cell culture ; Cell growth ; Cell Line, Tumor ; Cell migration ; Cell Movement - genetics ; Cholangiocarcinoma ; Cholangiocarcinoma - pathology ; Dehydrogenases ; energy metabolism ; Epithelial-Mesenchymal Transition - genetics ; Glucose ; Glycolysis ; Humans ; Kinases ; Lactic acidosis ; Metabolism ; Mitochondria ; Original ; ORIGINAL ARTICLES ; Phenotype ; Phenotypes ; Phosphorylation ; Reagents ; Respiration ; Sequence analysis ; THBS1 ; Thrombospondin ; Thrombospondins - genetics ; Transcription factors ; Tumor microenvironment ; Tumor Microenvironment - genetics ; Up-Regulation ; Wound healing</subject><ispartof>Cancer science, 2023-04, Vol.114 (4), p.1541-1555</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2022 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5349-4c854817332840d8fa479d4d02539b7806866378ba3f67a2b463db5b882c79103</citedby><cites>FETCH-LOGICAL-c5349-4c854817332840d8fa479d4d02539b7806866378ba3f67a2b463db5b882c79103</cites><orcidid>0000-0002-9265-5113 ; 0000-0002-5748-016X ; 0000-0002-2196-8673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067391/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067391/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,11560,27922,27923,45572,45573,46050,46474,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36562400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thamrongwaranggoon, Ubonrat</creatorcontrib><creatorcontrib>Kuribayashi, Kanji</creatorcontrib><creatorcontrib>Araki, Hirotaka</creatorcontrib><creatorcontrib>Hino, Yuko</creatorcontrib><creatorcontrib>Koga, Tomoaki</creatorcontrib><creatorcontrib>Seubwai, Wunchana</creatorcontrib><creatorcontrib>Wongkham, Sopit</creatorcontrib><creatorcontrib>Nakao, Mitsuyoshi</creatorcontrib><creatorcontrib>Hino, Shinjiro</creatorcontrib><title>Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long‐term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short‐term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA‐induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA‐sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial–mesenchymal transition (EMT), including thrombospondin‐1 (THBS1), which encodes a pro‐EMT‐secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA‐induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression. This paper uncovers an intimate link between metabolic reprogramming and the malignant behavior of cholangiocarcinoma cells under lactic acidosis.</description><subject>Acidification</subject><subject>Acidosis</subject><subject>Acidosis, Lactic - genetics</subject><subject>Antibodies</subject><subject>Bile Duct Neoplasms - pathology</subject><subject>Bile Ducts, Intrahepatic - metabolism</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement - genetics</subject><subject>Cholangiocarcinoma</subject><subject>Cholangiocarcinoma - pathology</subject><subject>Dehydrogenases</subject><subject>energy metabolism</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>Glucose</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Kinases</subject><subject>Lactic acidosis</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Original</subject><subject>ORIGINAL ARTICLES</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Reagents</subject><subject>Respiration</subject><subject>Sequence analysis</subject><subject>THBS1</subject><subject>Thrombospondin</subject><subject>Thrombospondins - genetics</subject><subject>Transcription factors</subject><subject>Tumor microenvironment</subject><subject>Tumor Microenvironment - genetics</subject><subject>Up-Regulation</subject><subject>Wound healing</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctu1DAYhSNERUthwQsgS2xgMa0dO76sUDXiJo3UBbC2HNvJuEr8Bzspmh0b9jwjT4Kn01aAVG98-T8dneNTVS8IPiNlnVuTz0jDlXpUnRDK1EpgzB_fnMVKYVofV09zvsKYcqbYk-qY8obXDOOT6ufG2DlYZGxwkENGIbrF-oxGP5sWhv0oOjRtfYR5N5Vr8lOCPplxDLEvOLJbGEzsA1iTbIgwGmT9MGR0HQyatx4tU_L9Mpg5QETQlbcEYwt5guhC_P3jF3lWHXVmyP757X5afX3_7sv642pz-eHT-mKzss0-FrOyYZIISmvJsJOdYUI55nDdUNUKibnknArZGtpxYeqWcerappWytkIRTE-rtwfdaWlH76yPczKDnlIYTdppMEH_O4lhq3u41qR8qKCKFIXXtwoJvi0-z3oMeR_XRA9L1rVoJCG4WCzoq__QK1hSLPkKpYpNJRpeqDcHyibIOfnu3g3Bet-uLu3qm3YL-_Jv-_fkXZ0FOD8A38Pgdw8r6fXF54PkH7tbsbY</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Thamrongwaranggoon, Ubonrat</creator><creator>Kuribayashi, Kanji</creator><creator>Araki, Hirotaka</creator><creator>Hino, Yuko</creator><creator>Koga, Tomoaki</creator><creator>Seubwai, Wunchana</creator><creator>Wongkham, Sopit</creator><creator>Nakao, Mitsuyoshi</creator><creator>Hino, Shinjiro</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9265-5113</orcidid><orcidid>https://orcid.org/0000-0002-5748-016X</orcidid><orcidid>https://orcid.org/0000-0002-2196-8673</orcidid></search><sort><creationdate>202304</creationdate><title>Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1</title><author>Thamrongwaranggoon, Ubonrat ; Kuribayashi, Kanji ; Araki, Hirotaka ; Hino, Yuko ; Koga, Tomoaki ; Seubwai, Wunchana ; Wongkham, Sopit ; Nakao, Mitsuyoshi ; Hino, Shinjiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5349-4c854817332840d8fa479d4d02539b7806866378ba3f67a2b463db5b882c79103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidification</topic><topic>Acidosis</topic><topic>Acidosis, Lactic - genetics</topic><topic>Antibodies</topic><topic>Bile Duct Neoplasms - pathology</topic><topic>Bile Ducts, Intrahepatic - metabolism</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement - genetics</topic><topic>Cholangiocarcinoma</topic><topic>Cholangiocarcinoma - pathology</topic><topic>Dehydrogenases</topic><topic>energy metabolism</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>Glucose</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Kinases</topic><topic>Lactic acidosis</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Original</topic><topic>ORIGINAL ARTICLES</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Reagents</topic><topic>Respiration</topic><topic>Sequence analysis</topic><topic>THBS1</topic><topic>Thrombospondin</topic><topic>Thrombospondins - genetics</topic><topic>Transcription factors</topic><topic>Tumor microenvironment</topic><topic>Tumor Microenvironment - genetics</topic><topic>Up-Regulation</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thamrongwaranggoon, Ubonrat</creatorcontrib><creatorcontrib>Kuribayashi, Kanji</creatorcontrib><creatorcontrib>Araki, Hirotaka</creatorcontrib><creatorcontrib>Hino, Yuko</creatorcontrib><creatorcontrib>Koga, Tomoaki</creatorcontrib><creatorcontrib>Seubwai, Wunchana</creatorcontrib><creatorcontrib>Wongkham, Sopit</creatorcontrib><creatorcontrib>Nakao, Mitsuyoshi</creatorcontrib><creatorcontrib>Hino, Shinjiro</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thamrongwaranggoon, Ubonrat</au><au>Kuribayashi, Kanji</au><au>Araki, Hirotaka</au><au>Hino, Yuko</au><au>Koga, Tomoaki</au><au>Seubwai, Wunchana</au><au>Wongkham, Sopit</au><au>Nakao, Mitsuyoshi</au><au>Hino, Shinjiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2023-04</date><risdate>2023</risdate><volume>114</volume><issue>4</issue><spage>1541</spage><epage>1555</epage><pages>1541-1555</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long‐term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short‐term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA‐induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA‐sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial–mesenchymal transition (EMT), including thrombospondin‐1 (THBS1), which encodes a pro‐EMT‐secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA‐induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression. This paper uncovers an intimate link between metabolic reprogramming and the malignant behavior of cholangiocarcinoma cells under lactic acidosis.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36562400</pmid><doi>10.1111/cas.15699</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9265-5113</orcidid><orcidid>https://orcid.org/0000-0002-5748-016X</orcidid><orcidid>https://orcid.org/0000-0002-2196-8673</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2023-04, Vol.114 (4), p.1541-1555
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10067391
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central
subjects Acidification
Acidosis
Acidosis, Lactic - genetics
Antibodies
Bile Duct Neoplasms - pathology
Bile Ducts, Intrahepatic - metabolism
Cancer
Cell culture
Cell growth
Cell Line, Tumor
Cell migration
Cell Movement - genetics
Cholangiocarcinoma
Cholangiocarcinoma - pathology
Dehydrogenases
energy metabolism
Epithelial-Mesenchymal Transition - genetics
Glucose
Glycolysis
Humans
Kinases
Lactic acidosis
Metabolism
Mitochondria
Original
ORIGINAL ARTICLES
Phenotype
Phenotypes
Phosphorylation
Reagents
Respiration
Sequence analysis
THBS1
Thrombospondin
Thrombospondins - genetics
Transcription factors
Tumor microenvironment
Tumor Microenvironment - genetics
Up-Regulation
Wound healing
title Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactic%20acidosis%20induces%20metabolic%20and%20phenotypic%20reprogramming%20in%20cholangiocarcinoma%20cells%20via%20the%20upregulation%20of%20thrombospondin%E2%80%901&rft.jtitle=Cancer%20science&rft.au=Thamrongwaranggoon,%20Ubonrat&rft.date=2023-04&rft.volume=114&rft.issue=4&rft.spage=1541&rft.epage=1555&rft.pages=1541-1555&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.15699&rft_dat=%3Cproquest_pubme%3E2758110733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793789756&rft_id=info:pmid/36562400&rfr_iscdi=true