Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1
The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency o...
Gespeichert in:
Veröffentlicht in: | Cancer science 2023-04, Vol.114 (4), p.1541-1555 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1555 |
---|---|
container_issue | 4 |
container_start_page | 1541 |
container_title | Cancer science |
container_volume | 114 |
creator | Thamrongwaranggoon, Ubonrat Kuribayashi, Kanji Araki, Hirotaka Hino, Yuko Koga, Tomoaki Seubwai, Wunchana Wongkham, Sopit Nakao, Mitsuyoshi Hino, Shinjiro |
description | The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long‐term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short‐term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA‐induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA‐sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial–mesenchymal transition (EMT), including thrombospondin‐1 (THBS1), which encodes a pro‐EMT‐secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA‐induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression.
This paper uncovers an intimate link between metabolic reprogramming and the malignant behavior of cholangiocarcinoma cells under lactic acidosis. |
doi_str_mv | 10.1111/cas.15699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10067391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758110733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5349-4c854817332840d8fa479d4d02539b7806866378ba3f67a2b463db5b882c79103</originalsourceid><addsrcrecordid>eNp1kctu1DAYhSNERUthwQsgS2xgMa0dO76sUDXiJo3UBbC2HNvJuEr8Bzspmh0b9jwjT4Kn01aAVG98-T8dneNTVS8IPiNlnVuTz0jDlXpUnRDK1EpgzB_fnMVKYVofV09zvsKYcqbYk-qY8obXDOOT6ufG2DlYZGxwkENGIbrF-oxGP5sWhv0oOjRtfYR5N5Vr8lOCPplxDLEvOLJbGEzsA1iTbIgwGmT9MGR0HQyatx4tU_L9Mpg5QETQlbcEYwt5guhC_P3jF3lWHXVmyP757X5afX3_7sv642pz-eHT-mKzss0-FrOyYZIISmvJsJOdYUI55nDdUNUKibnknArZGtpxYeqWcerappWytkIRTE-rtwfdaWlH76yPczKDnlIYTdppMEH_O4lhq3u41qR8qKCKFIXXtwoJvi0-z3oMeR_XRA9L1rVoJCG4WCzoq__QK1hSLPkKpYpNJRpeqDcHyibIOfnu3g3Bet-uLu3qm3YL-_Jv-_fkXZ0FOD8A38Pgdw8r6fXF54PkH7tbsbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793789756</pqid></control><display><type>article</type><title>Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Thamrongwaranggoon, Ubonrat ; Kuribayashi, Kanji ; Araki, Hirotaka ; Hino, Yuko ; Koga, Tomoaki ; Seubwai, Wunchana ; Wongkham, Sopit ; Nakao, Mitsuyoshi ; Hino, Shinjiro</creator><creatorcontrib>Thamrongwaranggoon, Ubonrat ; Kuribayashi, Kanji ; Araki, Hirotaka ; Hino, Yuko ; Koga, Tomoaki ; Seubwai, Wunchana ; Wongkham, Sopit ; Nakao, Mitsuyoshi ; Hino, Shinjiro</creatorcontrib><description>The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long‐term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short‐term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA‐induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA‐sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial–mesenchymal transition (EMT), including thrombospondin‐1 (THBS1), which encodes a pro‐EMT‐secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA‐induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression.
This paper uncovers an intimate link between metabolic reprogramming and the malignant behavior of cholangiocarcinoma cells under lactic acidosis.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.15699</identifier><identifier>PMID: 36562400</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Acidification ; Acidosis ; Acidosis, Lactic - genetics ; Antibodies ; Bile Duct Neoplasms - pathology ; Bile Ducts, Intrahepatic - metabolism ; Cancer ; Cell culture ; Cell growth ; Cell Line, Tumor ; Cell migration ; Cell Movement - genetics ; Cholangiocarcinoma ; Cholangiocarcinoma - pathology ; Dehydrogenases ; energy metabolism ; Epithelial-Mesenchymal Transition - genetics ; Glucose ; Glycolysis ; Humans ; Kinases ; Lactic acidosis ; Metabolism ; Mitochondria ; Original ; ORIGINAL ARTICLES ; Phenotype ; Phenotypes ; Phosphorylation ; Reagents ; Respiration ; Sequence analysis ; THBS1 ; Thrombospondin ; Thrombospondins - genetics ; Transcription factors ; Tumor microenvironment ; Tumor Microenvironment - genetics ; Up-Regulation ; Wound healing</subject><ispartof>Cancer science, 2023-04, Vol.114 (4), p.1541-1555</ispartof><rights>2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2022 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5349-4c854817332840d8fa479d4d02539b7806866378ba3f67a2b463db5b882c79103</citedby><cites>FETCH-LOGICAL-c5349-4c854817332840d8fa479d4d02539b7806866378ba3f67a2b463db5b882c79103</cites><orcidid>0000-0002-9265-5113 ; 0000-0002-5748-016X ; 0000-0002-2196-8673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067391/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067391/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,11560,27922,27923,45572,45573,46050,46474,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36562400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thamrongwaranggoon, Ubonrat</creatorcontrib><creatorcontrib>Kuribayashi, Kanji</creatorcontrib><creatorcontrib>Araki, Hirotaka</creatorcontrib><creatorcontrib>Hino, Yuko</creatorcontrib><creatorcontrib>Koga, Tomoaki</creatorcontrib><creatorcontrib>Seubwai, Wunchana</creatorcontrib><creatorcontrib>Wongkham, Sopit</creatorcontrib><creatorcontrib>Nakao, Mitsuyoshi</creatorcontrib><creatorcontrib>Hino, Shinjiro</creatorcontrib><title>Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long‐term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short‐term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA‐induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA‐sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial–mesenchymal transition (EMT), including thrombospondin‐1 (THBS1), which encodes a pro‐EMT‐secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA‐induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression.
This paper uncovers an intimate link between metabolic reprogramming and the malignant behavior of cholangiocarcinoma cells under lactic acidosis.</description><subject>Acidification</subject><subject>Acidosis</subject><subject>Acidosis, Lactic - genetics</subject><subject>Antibodies</subject><subject>Bile Duct Neoplasms - pathology</subject><subject>Bile Ducts, Intrahepatic - metabolism</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement - genetics</subject><subject>Cholangiocarcinoma</subject><subject>Cholangiocarcinoma - pathology</subject><subject>Dehydrogenases</subject><subject>energy metabolism</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>Glucose</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Kinases</subject><subject>Lactic acidosis</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Original</subject><subject>ORIGINAL ARTICLES</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Reagents</subject><subject>Respiration</subject><subject>Sequence analysis</subject><subject>THBS1</subject><subject>Thrombospondin</subject><subject>Thrombospondins - genetics</subject><subject>Transcription factors</subject><subject>Tumor microenvironment</subject><subject>Tumor Microenvironment - genetics</subject><subject>Up-Regulation</subject><subject>Wound healing</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctu1DAYhSNERUthwQsgS2xgMa0dO76sUDXiJo3UBbC2HNvJuEr8Bzspmh0b9jwjT4Kn01aAVG98-T8dneNTVS8IPiNlnVuTz0jDlXpUnRDK1EpgzB_fnMVKYVofV09zvsKYcqbYk-qY8obXDOOT6ufG2DlYZGxwkENGIbrF-oxGP5sWhv0oOjRtfYR5N5Vr8lOCPplxDLEvOLJbGEzsA1iTbIgwGmT9MGR0HQyatx4tU_L9Mpg5QETQlbcEYwt5guhC_P3jF3lWHXVmyP757X5afX3_7sv642pz-eHT-mKzss0-FrOyYZIISmvJsJOdYUI55nDdUNUKibnknArZGtpxYeqWcerappWytkIRTE-rtwfdaWlH76yPczKDnlIYTdppMEH_O4lhq3u41qR8qKCKFIXXtwoJvi0-z3oMeR_XRA9L1rVoJCG4WCzoq__QK1hSLPkKpYpNJRpeqDcHyibIOfnu3g3Bet-uLu3qm3YL-_Jv-_fkXZ0FOD8A38Pgdw8r6fXF54PkH7tbsbY</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Thamrongwaranggoon, Ubonrat</creator><creator>Kuribayashi, Kanji</creator><creator>Araki, Hirotaka</creator><creator>Hino, Yuko</creator><creator>Koga, Tomoaki</creator><creator>Seubwai, Wunchana</creator><creator>Wongkham, Sopit</creator><creator>Nakao, Mitsuyoshi</creator><creator>Hino, Shinjiro</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9265-5113</orcidid><orcidid>https://orcid.org/0000-0002-5748-016X</orcidid><orcidid>https://orcid.org/0000-0002-2196-8673</orcidid></search><sort><creationdate>202304</creationdate><title>Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1</title><author>Thamrongwaranggoon, Ubonrat ; Kuribayashi, Kanji ; Araki, Hirotaka ; Hino, Yuko ; Koga, Tomoaki ; Seubwai, Wunchana ; Wongkham, Sopit ; Nakao, Mitsuyoshi ; Hino, Shinjiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5349-4c854817332840d8fa479d4d02539b7806866378ba3f67a2b463db5b882c79103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidification</topic><topic>Acidosis</topic><topic>Acidosis, Lactic - genetics</topic><topic>Antibodies</topic><topic>Bile Duct Neoplasms - pathology</topic><topic>Bile Ducts, Intrahepatic - metabolism</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement - genetics</topic><topic>Cholangiocarcinoma</topic><topic>Cholangiocarcinoma - pathology</topic><topic>Dehydrogenases</topic><topic>energy metabolism</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>Glucose</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Kinases</topic><topic>Lactic acidosis</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Original</topic><topic>ORIGINAL ARTICLES</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Reagents</topic><topic>Respiration</topic><topic>Sequence analysis</topic><topic>THBS1</topic><topic>Thrombospondin</topic><topic>Thrombospondins - genetics</topic><topic>Transcription factors</topic><topic>Tumor microenvironment</topic><topic>Tumor Microenvironment - genetics</topic><topic>Up-Regulation</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thamrongwaranggoon, Ubonrat</creatorcontrib><creatorcontrib>Kuribayashi, Kanji</creatorcontrib><creatorcontrib>Araki, Hirotaka</creatorcontrib><creatorcontrib>Hino, Yuko</creatorcontrib><creatorcontrib>Koga, Tomoaki</creatorcontrib><creatorcontrib>Seubwai, Wunchana</creatorcontrib><creatorcontrib>Wongkham, Sopit</creatorcontrib><creatorcontrib>Nakao, Mitsuyoshi</creatorcontrib><creatorcontrib>Hino, Shinjiro</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thamrongwaranggoon, Ubonrat</au><au>Kuribayashi, Kanji</au><au>Araki, Hirotaka</au><au>Hino, Yuko</au><au>Koga, Tomoaki</au><au>Seubwai, Wunchana</au><au>Wongkham, Sopit</au><au>Nakao, Mitsuyoshi</au><au>Hino, Shinjiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2023-04</date><risdate>2023</risdate><volume>114</volume><issue>4</issue><spage>1541</spage><epage>1555</epage><pages>1541-1555</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long‐term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short‐term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA‐induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA‐sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial–mesenchymal transition (EMT), including thrombospondin‐1 (THBS1), which encodes a pro‐EMT‐secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA‐induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression.
This paper uncovers an intimate link between metabolic reprogramming and the malignant behavior of cholangiocarcinoma cells under lactic acidosis.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>36562400</pmid><doi>10.1111/cas.15699</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9265-5113</orcidid><orcidid>https://orcid.org/0000-0002-5748-016X</orcidid><orcidid>https://orcid.org/0000-0002-2196-8673</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2023-04, Vol.114 (4), p.1541-1555 |
issn | 1347-9032 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10067391 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central |
subjects | Acidification Acidosis Acidosis, Lactic - genetics Antibodies Bile Duct Neoplasms - pathology Bile Ducts, Intrahepatic - metabolism Cancer Cell culture Cell growth Cell Line, Tumor Cell migration Cell Movement - genetics Cholangiocarcinoma Cholangiocarcinoma - pathology Dehydrogenases energy metabolism Epithelial-Mesenchymal Transition - genetics Glucose Glycolysis Humans Kinases Lactic acidosis Metabolism Mitochondria Original ORIGINAL ARTICLES Phenotype Phenotypes Phosphorylation Reagents Respiration Sequence analysis THBS1 Thrombospondin Thrombospondins - genetics Transcription factors Tumor microenvironment Tumor Microenvironment - genetics Up-Regulation Wound healing |
title | Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin‐1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactic%20acidosis%20induces%20metabolic%20and%20phenotypic%20reprogramming%20in%20cholangiocarcinoma%20cells%20via%20the%20upregulation%20of%20thrombospondin%E2%80%901&rft.jtitle=Cancer%20science&rft.au=Thamrongwaranggoon,%20Ubonrat&rft.date=2023-04&rft.volume=114&rft.issue=4&rft.spage=1541&rft.epage=1555&rft.pages=1541-1555&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.15699&rft_dat=%3Cproquest_pubme%3E2758110733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793789756&rft_id=info:pmid/36562400&rfr_iscdi=true |