TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies
In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2023-02, Vol.22 (2), p.311-322 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 2 |
container_start_page | 311 |
container_title | Journal of proteome research |
container_volume | 22 |
creator | Basisty, Nathan Shulman, Nicholas Wehrfritz, Cameron Marsh, Alexandra N. Shah, Samah Rose, Jacob Ebert, Scott Miller, Matthew Dai, Dao-Fu Rabinovitch, Peter S. Adams, Christopher M. MacCoss, Michael J. MacLean, Brendan Schilling, Birgit |
description | In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy. |
doi_str_mv | 10.1021/acs.jproteome.2c00173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040439277</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-7130644ea43a70b904fbc0f3b481633c26d7c10ec72f1b8717c85cafbd29d2093</originalsourceid><addsrcrecordid>eNqFkUFP4zAQhS3ECtiyPwHkI5eWcezYCRdUVbAgdbUrKGev40zAkMbFThD996S0VHDiNDPye2_G-gg5YjBikLBTY-PocRF8i36Oo8QCMMV3yAFLeTrkOajdjz7L-T75GeNjL0kV8D2yzyWTaQbygPyfdaHxL3hzRsf09mlZuwbpxWuLoTE1nXlf08oHOu6nZXSR-or-Wy11Dd04A-37P9iawtfO0qkpsA-5p7dtVzqMh-RHZeqIvzZ1QO4uL2aTq-H07-_ryXg6NEJAO1SMgxQCjeBGQZGDqAoLFS9ExiTnNpGlsgzQqqRiRaaYsllqTVWUSV4mkPMBOV_nLrpijqXFpg2m1ovg5iYstTdOf31p3IO-9y-aAUiZqVXCySYh-OcOY6vnLlqsa9Og76LmIEDwPFHqW2miWCYFS_vTByRdS23wMQasticx0CuSuieptyT1hmTvO_78n63rA10vYGvBu993K2Dxm9A3YOyvpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718641516</pqid></control><display><type>article</type><title>TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies</title><source>ACS Publications</source><source>MEDLINE</source><creator>Basisty, Nathan ; Shulman, Nicholas ; Wehrfritz, Cameron ; Marsh, Alexandra N. ; Shah, Samah ; Rose, Jacob ; Ebert, Scott ; Miller, Matthew ; Dai, Dao-Fu ; Rabinovitch, Peter S. ; Adams, Christopher M. ; MacCoss, Michael J. ; MacLean, Brendan ; Schilling, Birgit</creator><creatorcontrib>Basisty, Nathan ; Shulman, Nicholas ; Wehrfritz, Cameron ; Marsh, Alexandra N. ; Shah, Samah ; Rose, Jacob ; Ebert, Scott ; Miller, Matthew ; Dai, Dao-Fu ; Rabinovitch, Peter S. ; Adams, Christopher M. ; MacCoss, Michael J. ; MacLean, Brendan ; Schilling, Birgit</creatorcontrib><description>In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.2c00173</identifier><identifier>PMID: 36165806</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>computer software ; data visualization ; Isotope Labeling - methods ; mass spectrometry ; Mass Spectrometry - methods ; muscular atrophy ; neurodegenerative diseases ; protein metabolism ; Proteolysis ; proteome ; proteomics ; Proteomics - methods ; skeletal muscle ; Software ; statistical analysis ; Workflow</subject><ispartof>Journal of proteome research, 2023-02, Vol.22 (2), p.311-322</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-7130644ea43a70b904fbc0f3b481633c26d7c10ec72f1b8717c85cafbd29d2093</citedby><cites>FETCH-LOGICAL-a440t-7130644ea43a70b904fbc0f3b481633c26d7c10ec72f1b8717c85cafbd29d2093</cites><orcidid>0000-0001-6173-1139 ; 0000-0003-2142-6978 ; 0000-0003-1853-0256 ; 0000-0001-9907-2749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.2c00173$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.2c00173$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36165806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basisty, Nathan</creatorcontrib><creatorcontrib>Shulman, Nicholas</creatorcontrib><creatorcontrib>Wehrfritz, Cameron</creatorcontrib><creatorcontrib>Marsh, Alexandra N.</creatorcontrib><creatorcontrib>Shah, Samah</creatorcontrib><creatorcontrib>Rose, Jacob</creatorcontrib><creatorcontrib>Ebert, Scott</creatorcontrib><creatorcontrib>Miller, Matthew</creatorcontrib><creatorcontrib>Dai, Dao-Fu</creatorcontrib><creatorcontrib>Rabinovitch, Peter S.</creatorcontrib><creatorcontrib>Adams, Christopher M.</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><creatorcontrib>MacLean, Brendan</creatorcontrib><creatorcontrib>Schilling, Birgit</creatorcontrib><title>TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.</description><subject>computer software</subject><subject>data visualization</subject><subject>Isotope Labeling - methods</subject><subject>mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>muscular atrophy</subject><subject>neurodegenerative diseases</subject><subject>protein metabolism</subject><subject>Proteolysis</subject><subject>proteome</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>skeletal muscle</subject><subject>Software</subject><subject>statistical analysis</subject><subject>Workflow</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP4zAQhS3ECtiyPwHkI5eWcezYCRdUVbAgdbUrKGev40zAkMbFThD996S0VHDiNDPye2_G-gg5YjBikLBTY-PocRF8i36Oo8QCMMV3yAFLeTrkOajdjz7L-T75GeNjL0kV8D2yzyWTaQbygPyfdaHxL3hzRsf09mlZuwbpxWuLoTE1nXlf08oHOu6nZXSR-or-Wy11Dd04A-37P9iawtfO0qkpsA-5p7dtVzqMh-RHZeqIvzZ1QO4uL2aTq-H07-_ryXg6NEJAO1SMgxQCjeBGQZGDqAoLFS9ExiTnNpGlsgzQqqRiRaaYsllqTVWUSV4mkPMBOV_nLrpijqXFpg2m1ovg5iYstTdOf31p3IO-9y-aAUiZqVXCySYh-OcOY6vnLlqsa9Og76LmIEDwPFHqW2miWCYFS_vTByRdS23wMQasticx0CuSuieptyT1hmTvO_78n63rA10vYGvBu993K2Dxm9A3YOyvpQ</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Basisty, Nathan</creator><creator>Shulman, Nicholas</creator><creator>Wehrfritz, Cameron</creator><creator>Marsh, Alexandra N.</creator><creator>Shah, Samah</creator><creator>Rose, Jacob</creator><creator>Ebert, Scott</creator><creator>Miller, Matthew</creator><creator>Dai, Dao-Fu</creator><creator>Rabinovitch, Peter S.</creator><creator>Adams, Christopher M.</creator><creator>MacCoss, Michael J.</creator><creator>MacLean, Brendan</creator><creator>Schilling, Birgit</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6173-1139</orcidid><orcidid>https://orcid.org/0000-0003-2142-6978</orcidid><orcidid>https://orcid.org/0000-0003-1853-0256</orcidid><orcidid>https://orcid.org/0000-0001-9907-2749</orcidid></search><sort><creationdate>20230203</creationdate><title>TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies</title><author>Basisty, Nathan ; Shulman, Nicholas ; Wehrfritz, Cameron ; Marsh, Alexandra N. ; Shah, Samah ; Rose, Jacob ; Ebert, Scott ; Miller, Matthew ; Dai, Dao-Fu ; Rabinovitch, Peter S. ; Adams, Christopher M. ; MacCoss, Michael J. ; MacLean, Brendan ; Schilling, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-7130644ea43a70b904fbc0f3b481633c26d7c10ec72f1b8717c85cafbd29d2093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>computer software</topic><topic>data visualization</topic><topic>Isotope Labeling - methods</topic><topic>mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>muscular atrophy</topic><topic>neurodegenerative diseases</topic><topic>protein metabolism</topic><topic>Proteolysis</topic><topic>proteome</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>skeletal muscle</topic><topic>Software</topic><topic>statistical analysis</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basisty, Nathan</creatorcontrib><creatorcontrib>Shulman, Nicholas</creatorcontrib><creatorcontrib>Wehrfritz, Cameron</creatorcontrib><creatorcontrib>Marsh, Alexandra N.</creatorcontrib><creatorcontrib>Shah, Samah</creatorcontrib><creatorcontrib>Rose, Jacob</creatorcontrib><creatorcontrib>Ebert, Scott</creatorcontrib><creatorcontrib>Miller, Matthew</creatorcontrib><creatorcontrib>Dai, Dao-Fu</creatorcontrib><creatorcontrib>Rabinovitch, Peter S.</creatorcontrib><creatorcontrib>Adams, Christopher M.</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><creatorcontrib>MacLean, Brendan</creatorcontrib><creatorcontrib>Schilling, Birgit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basisty, Nathan</au><au>Shulman, Nicholas</au><au>Wehrfritz, Cameron</au><au>Marsh, Alexandra N.</au><au>Shah, Samah</au><au>Rose, Jacob</au><au>Ebert, Scott</au><au>Miller, Matthew</au><au>Dai, Dao-Fu</au><au>Rabinovitch, Peter S.</au><au>Adams, Christopher M.</au><au>MacCoss, Michael J.</au><au>MacLean, Brendan</au><au>Schilling, Birgit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2023-02-03</date><risdate>2023</risdate><volume>22</volume><issue>2</issue><spage>311</spage><epage>322</epage><pages>311-322</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36165806</pmid><doi>10.1021/acs.jproteome.2c00173</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6173-1139</orcidid><orcidid>https://orcid.org/0000-0003-2142-6978</orcidid><orcidid>https://orcid.org/0000-0003-1853-0256</orcidid><orcidid>https://orcid.org/0000-0001-9907-2749</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2023-02, Vol.22 (2), p.311-322 |
issn | 1535-3893 1535-3907 1535-3907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066879 |
source | ACS Publications; MEDLINE |
subjects | computer software data visualization Isotope Labeling - methods mass spectrometry Mass Spectrometry - methods muscular atrophy neurodegenerative diseases protein metabolism Proteolysis proteome proteomics Proteomics - methods skeletal muscle Software statistical analysis Workflow |
title | TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TurnoveR:%20A%20Skyline%20External%20Tool%20for%20Analysis%20of%20Protein%20Turnover%20in%20Metabolic%20Labeling%20Studies&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Basisty,%20Nathan&rft.date=2023-02-03&rft.volume=22&rft.issue=2&rft.spage=311&rft.epage=322&rft.pages=311-322&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.2c00173&rft_dat=%3Cproquest_pubme%3E3040439277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718641516&rft_id=info:pmid/36165806&rfr_iscdi=true |