TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies

In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2023-02, Vol.22 (2), p.311-322
Hauptverfasser: Basisty, Nathan, Shulman, Nicholas, Wehrfritz, Cameron, Marsh, Alexandra N., Shah, Samah, Rose, Jacob, Ebert, Scott, Miller, Matthew, Dai, Dao-Fu, Rabinovitch, Peter S., Adams, Christopher M., MacCoss, Michael J., MacLean, Brendan, Schilling, Birgit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 2
container_start_page 311
container_title Journal of proteome research
container_volume 22
creator Basisty, Nathan
Shulman, Nicholas
Wehrfritz, Cameron
Marsh, Alexandra N.
Shah, Samah
Rose, Jacob
Ebert, Scott
Miller, Matthew
Dai, Dao-Fu
Rabinovitch, Peter S.
Adams, Christopher M.
MacCoss, Michael J.
MacLean, Brendan
Schilling, Birgit
description In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.
doi_str_mv 10.1021/acs.jproteome.2c00173
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040439277</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-7130644ea43a70b904fbc0f3b481633c26d7c10ec72f1b8717c85cafbd29d2093</originalsourceid><addsrcrecordid>eNqFkUFP4zAQhS3ECtiyPwHkI5eWcezYCRdUVbAgdbUrKGev40zAkMbFThD996S0VHDiNDPye2_G-gg5YjBikLBTY-PocRF8i36Oo8QCMMV3yAFLeTrkOajdjz7L-T75GeNjL0kV8D2yzyWTaQbygPyfdaHxL3hzRsf09mlZuwbpxWuLoTE1nXlf08oHOu6nZXSR-or-Wy11Dd04A-37P9iawtfO0qkpsA-5p7dtVzqMh-RHZeqIvzZ1QO4uL2aTq-H07-_ryXg6NEJAO1SMgxQCjeBGQZGDqAoLFS9ExiTnNpGlsgzQqqRiRaaYsllqTVWUSV4mkPMBOV_nLrpijqXFpg2m1ovg5iYstTdOf31p3IO-9y-aAUiZqVXCySYh-OcOY6vnLlqsa9Og76LmIEDwPFHqW2miWCYFS_vTByRdS23wMQasticx0CuSuieptyT1hmTvO_78n63rA10vYGvBu993K2Dxm9A3YOyvpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718641516</pqid></control><display><type>article</type><title>TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies</title><source>ACS Publications</source><source>MEDLINE</source><creator>Basisty, Nathan ; Shulman, Nicholas ; Wehrfritz, Cameron ; Marsh, Alexandra N. ; Shah, Samah ; Rose, Jacob ; Ebert, Scott ; Miller, Matthew ; Dai, Dao-Fu ; Rabinovitch, Peter S. ; Adams, Christopher M. ; MacCoss, Michael J. ; MacLean, Brendan ; Schilling, Birgit</creator><creatorcontrib>Basisty, Nathan ; Shulman, Nicholas ; Wehrfritz, Cameron ; Marsh, Alexandra N. ; Shah, Samah ; Rose, Jacob ; Ebert, Scott ; Miller, Matthew ; Dai, Dao-Fu ; Rabinovitch, Peter S. ; Adams, Christopher M. ; MacCoss, Michael J. ; MacLean, Brendan ; Schilling, Birgit</creatorcontrib><description>In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.2c00173</identifier><identifier>PMID: 36165806</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>computer software ; data visualization ; Isotope Labeling - methods ; mass spectrometry ; Mass Spectrometry - methods ; muscular atrophy ; neurodegenerative diseases ; protein metabolism ; Proteolysis ; proteome ; proteomics ; Proteomics - methods ; skeletal muscle ; Software ; statistical analysis ; Workflow</subject><ispartof>Journal of proteome research, 2023-02, Vol.22 (2), p.311-322</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-7130644ea43a70b904fbc0f3b481633c26d7c10ec72f1b8717c85cafbd29d2093</citedby><cites>FETCH-LOGICAL-a440t-7130644ea43a70b904fbc0f3b481633c26d7c10ec72f1b8717c85cafbd29d2093</cites><orcidid>0000-0001-6173-1139 ; 0000-0003-2142-6978 ; 0000-0003-1853-0256 ; 0000-0001-9907-2749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.2c00173$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.2c00173$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36165806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basisty, Nathan</creatorcontrib><creatorcontrib>Shulman, Nicholas</creatorcontrib><creatorcontrib>Wehrfritz, Cameron</creatorcontrib><creatorcontrib>Marsh, Alexandra N.</creatorcontrib><creatorcontrib>Shah, Samah</creatorcontrib><creatorcontrib>Rose, Jacob</creatorcontrib><creatorcontrib>Ebert, Scott</creatorcontrib><creatorcontrib>Miller, Matthew</creatorcontrib><creatorcontrib>Dai, Dao-Fu</creatorcontrib><creatorcontrib>Rabinovitch, Peter S.</creatorcontrib><creatorcontrib>Adams, Christopher M.</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><creatorcontrib>MacLean, Brendan</creatorcontrib><creatorcontrib>Schilling, Birgit</creatorcontrib><title>TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.</description><subject>computer software</subject><subject>data visualization</subject><subject>Isotope Labeling - methods</subject><subject>mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>muscular atrophy</subject><subject>neurodegenerative diseases</subject><subject>protein metabolism</subject><subject>Proteolysis</subject><subject>proteome</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>skeletal muscle</subject><subject>Software</subject><subject>statistical analysis</subject><subject>Workflow</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP4zAQhS3ECtiyPwHkI5eWcezYCRdUVbAgdbUrKGev40zAkMbFThD996S0VHDiNDPye2_G-gg5YjBikLBTY-PocRF8i36Oo8QCMMV3yAFLeTrkOajdjz7L-T75GeNjL0kV8D2yzyWTaQbygPyfdaHxL3hzRsf09mlZuwbpxWuLoTE1nXlf08oHOu6nZXSR-or-Wy11Dd04A-37P9iawtfO0qkpsA-5p7dtVzqMh-RHZeqIvzZ1QO4uL2aTq-H07-_ryXg6NEJAO1SMgxQCjeBGQZGDqAoLFS9ExiTnNpGlsgzQqqRiRaaYsllqTVWUSV4mkPMBOV_nLrpijqXFpg2m1ovg5iYstTdOf31p3IO-9y-aAUiZqVXCySYh-OcOY6vnLlqsa9Og76LmIEDwPFHqW2miWCYFS_vTByRdS23wMQasticx0CuSuieptyT1hmTvO_78n63rA10vYGvBu993K2Dxm9A3YOyvpQ</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Basisty, Nathan</creator><creator>Shulman, Nicholas</creator><creator>Wehrfritz, Cameron</creator><creator>Marsh, Alexandra N.</creator><creator>Shah, Samah</creator><creator>Rose, Jacob</creator><creator>Ebert, Scott</creator><creator>Miller, Matthew</creator><creator>Dai, Dao-Fu</creator><creator>Rabinovitch, Peter S.</creator><creator>Adams, Christopher M.</creator><creator>MacCoss, Michael J.</creator><creator>MacLean, Brendan</creator><creator>Schilling, Birgit</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6173-1139</orcidid><orcidid>https://orcid.org/0000-0003-2142-6978</orcidid><orcidid>https://orcid.org/0000-0003-1853-0256</orcidid><orcidid>https://orcid.org/0000-0001-9907-2749</orcidid></search><sort><creationdate>20230203</creationdate><title>TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies</title><author>Basisty, Nathan ; Shulman, Nicholas ; Wehrfritz, Cameron ; Marsh, Alexandra N. ; Shah, Samah ; Rose, Jacob ; Ebert, Scott ; Miller, Matthew ; Dai, Dao-Fu ; Rabinovitch, Peter S. ; Adams, Christopher M. ; MacCoss, Michael J. ; MacLean, Brendan ; Schilling, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-7130644ea43a70b904fbc0f3b481633c26d7c10ec72f1b8717c85cafbd29d2093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>computer software</topic><topic>data visualization</topic><topic>Isotope Labeling - methods</topic><topic>mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>muscular atrophy</topic><topic>neurodegenerative diseases</topic><topic>protein metabolism</topic><topic>Proteolysis</topic><topic>proteome</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>skeletal muscle</topic><topic>Software</topic><topic>statistical analysis</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basisty, Nathan</creatorcontrib><creatorcontrib>Shulman, Nicholas</creatorcontrib><creatorcontrib>Wehrfritz, Cameron</creatorcontrib><creatorcontrib>Marsh, Alexandra N.</creatorcontrib><creatorcontrib>Shah, Samah</creatorcontrib><creatorcontrib>Rose, Jacob</creatorcontrib><creatorcontrib>Ebert, Scott</creatorcontrib><creatorcontrib>Miller, Matthew</creatorcontrib><creatorcontrib>Dai, Dao-Fu</creatorcontrib><creatorcontrib>Rabinovitch, Peter S.</creatorcontrib><creatorcontrib>Adams, Christopher M.</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><creatorcontrib>MacLean, Brendan</creatorcontrib><creatorcontrib>Schilling, Birgit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basisty, Nathan</au><au>Shulman, Nicholas</au><au>Wehrfritz, Cameron</au><au>Marsh, Alexandra N.</au><au>Shah, Samah</au><au>Rose, Jacob</au><au>Ebert, Scott</au><au>Miller, Matthew</au><au>Dai, Dao-Fu</au><au>Rabinovitch, Peter S.</au><au>Adams, Christopher M.</au><au>MacCoss, Michael J.</au><au>MacLean, Brendan</au><au>Schilling, Birgit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2023-02-03</date><risdate>2023</risdate><volume>22</volume><issue>2</issue><spage>311</spage><epage>322</epage><pages>311-322</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36165806</pmid><doi>10.1021/acs.jproteome.2c00173</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6173-1139</orcidid><orcidid>https://orcid.org/0000-0003-2142-6978</orcidid><orcidid>https://orcid.org/0000-0003-1853-0256</orcidid><orcidid>https://orcid.org/0000-0001-9907-2749</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2023-02, Vol.22 (2), p.311-322
issn 1535-3893
1535-3907
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066879
source ACS Publications; MEDLINE
subjects computer software
data visualization
Isotope Labeling - methods
mass spectrometry
Mass Spectrometry - methods
muscular atrophy
neurodegenerative diseases
protein metabolism
Proteolysis
proteome
proteomics
Proteomics - methods
skeletal muscle
Software
statistical analysis
Workflow
title TurnoveR: A Skyline External Tool for Analysis of Protein Turnover in Metabolic Labeling Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TurnoveR:%20A%20Skyline%20External%20Tool%20for%20Analysis%20of%20Protein%20Turnover%20in%20Metabolic%20Labeling%20Studies&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Basisty,%20Nathan&rft.date=2023-02-03&rft.volume=22&rft.issue=2&rft.spage=311&rft.epage=322&rft.pages=311-322&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.2c00173&rft_dat=%3Cproquest_pubme%3E3040439277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718641516&rft_id=info:pmid/36165806&rfr_iscdi=true