Crisaborole efficacy in murine models of skin inflammation and Staphylococcus aureus infection

Phosphodiesterase 4 (PDE4) is highly expressed in keratinocytes and immune cells and promotes pro‐inflammatory responses upon activation. The activity of PDE4 has been attributed to various inflammatory conditions, leading to the development and approval of PDE4 inhibitors as host‐directed therapeut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental dermatology 2023-04, Vol.32 (4), p.425-435
Hauptverfasser: Youn, Christine, Dikeman, Dustin A., Chang, Evelyn, Liu, Haiyun, Nolan, Sabrina J., Alphonse, Martin P., Joyce, Daniel P., Liu, Qi, Meixiong, James, Dong, Xinzhong, Miller, Lloyd S., Archer, Nathan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 4
container_start_page 425
container_title Experimental dermatology
container_volume 32
creator Youn, Christine
Dikeman, Dustin A.
Chang, Evelyn
Liu, Haiyun
Nolan, Sabrina J.
Alphonse, Martin P.
Joyce, Daniel P.
Liu, Qi
Meixiong, James
Dong, Xinzhong
Miller, Lloyd S.
Archer, Nathan K.
description Phosphodiesterase 4 (PDE4) is highly expressed in keratinocytes and immune cells and promotes pro‐inflammatory responses upon activation. The activity of PDE4 has been attributed to various inflammatory conditions, leading to the development and approval of PDE4 inhibitors as host‐directed therapeutics in humans. For example, the topical PDE4 inhibitor, crisaborole, is approved for the treatment of mild‐to‐moderate atopic dermatitis and has shown efficacy in patients with psoriasis. However, the role of crisaborole in regulating the immunopathogenesis of inflammatory skin diseases and infection is not entirely known. Therefore, we evaluated the effects of crisaborole in multiple mouse models, including psoriasis‐like dermatitis, AD‐like skin inflammation with and without filaggrin mutations, and Staphylococcus aureus skin infection. We discovered that crisaborole dampens myeloid cells and itch in the skin during psoriasis‐like dermatitis. Furthermore, crisaborole was effective in reducing skin inflammation in the context of filaggrin deficiency. Importantly, crisaborole reduced S. aureus skin colonization during AD‐like skin inflammation. However, crisaborole was not efficacious in treating S. aureus skin infections, even as adjunctive therapy to antibiotics. Taken together, we found that crisaborole reduced itch during psoriasis‐like dermatitis and decreased S. aureus skin colonization upon AD‐like skin inflammation, which act as additional mechanisms by which crisaborole dampens the immunopathogenesis in mouse models of inflammatory skin diseases. Further examination is warranted to translate these preclinical findings to human disease.
doi_str_mv 10.1111/exd.14722
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793411741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3692-84cbc39e41fed0b95e8f7ed308caf59db01324cdaba3cd633a876aff0a09caea3</originalsourceid><addsrcrecordid>eNp10U1rFTEUBuAgFnutLvwDMuCmLqY9mWSSmZXItX5AwYUKrgxnMic2dSa5Jneq99839daigtkcSB5eTngZe8LhhJdzSj_HEy5109xjK64AalBNe5-toAdVKw3tIXuY8yUA10K3D9ihUFJx6JoV-7JOPuMQU5yoIue8RburfKjmJflA1RxHmnIVXZW_lVsf3ITzjFsfQ4VhrD5scXOxm6KN1i65wiVRGYWRvTGP2IHDKdPj23nEPr0--7h-W5-_f_Nu_fK8tkL1Td1JO1jRk-SORhj6ljqnaRTQWXRtPw7ARSPtiAMKOyohsNMKnQOE3iKhOGIv9rmbZZhptBS2CSezSX7GtDMRvfn7JfgL8zVeGQ6gVCegJBzfJqT4faG8NbPPlqYJA8Ulm0ZLJXqpZVPos3_oZVxSKP8rqheScy15Uc_3yqaYcyJ3tw0Hc1ObKbWZX7UV-_TP9e_k754KON2DH36i3f-TzNnnV_vIa-QRpJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793411741</pqid></control><display><type>article</type><title>Crisaborole efficacy in murine models of skin inflammation and Staphylococcus aureus infection</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Youn, Christine ; Dikeman, Dustin A. ; Chang, Evelyn ; Liu, Haiyun ; Nolan, Sabrina J. ; Alphonse, Martin P. ; Joyce, Daniel P. ; Liu, Qi ; Meixiong, James ; Dong, Xinzhong ; Miller, Lloyd S. ; Archer, Nathan K.</creator><creatorcontrib>Youn, Christine ; Dikeman, Dustin A. ; Chang, Evelyn ; Liu, Haiyun ; Nolan, Sabrina J. ; Alphonse, Martin P. ; Joyce, Daniel P. ; Liu, Qi ; Meixiong, James ; Dong, Xinzhong ; Miller, Lloyd S. ; Archer, Nathan K.</creatorcontrib><description>Phosphodiesterase 4 (PDE4) is highly expressed in keratinocytes and immune cells and promotes pro‐inflammatory responses upon activation. The activity of PDE4 has been attributed to various inflammatory conditions, leading to the development and approval of PDE4 inhibitors as host‐directed therapeutics in humans. For example, the topical PDE4 inhibitor, crisaborole, is approved for the treatment of mild‐to‐moderate atopic dermatitis and has shown efficacy in patients with psoriasis. However, the role of crisaborole in regulating the immunopathogenesis of inflammatory skin diseases and infection is not entirely known. Therefore, we evaluated the effects of crisaborole in multiple mouse models, including psoriasis‐like dermatitis, AD‐like skin inflammation with and without filaggrin mutations, and Staphylococcus aureus skin infection. We discovered that crisaborole dampens myeloid cells and itch in the skin during psoriasis‐like dermatitis. Furthermore, crisaborole was effective in reducing skin inflammation in the context of filaggrin deficiency. Importantly, crisaborole reduced S. aureus skin colonization during AD‐like skin inflammation. However, crisaborole was not efficacious in treating S. aureus skin infections, even as adjunctive therapy to antibiotics. Taken together, we found that crisaborole reduced itch during psoriasis‐like dermatitis and decreased S. aureus skin colonization upon AD‐like skin inflammation, which act as additional mechanisms by which crisaborole dampens the immunopathogenesis in mouse models of inflammatory skin diseases. Further examination is warranted to translate these preclinical findings to human disease.</description><identifier>ISSN: 0906-6705</identifier><identifier>EISSN: 1600-0625</identifier><identifier>DOI: 10.1111/exd.14722</identifier><identifier>PMID: 36461082</identifier><language>eng</language><publisher>Denmark: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Animals ; Antibiotics ; Atopic dermatitis ; Bridged Bicyclo Compounds, Heterocyclic - pharmacology ; Bridged Bicyclo Compounds, Heterocyclic - therapeutic use ; Colonization ; crisaborole ; Cyclic Nucleotide Phosphodiesterases, Type 4 ; Dermatitis ; Dermatitis, Atopic - drug therapy ; Disease Models, Animal ; Filaggrin ; Filaggrin Proteins ; Humans ; Immunopathogenesis ; Inflammation ; Inflammation - drug therapy ; Keratinocytes ; Mice ; Myeloid cells ; Phosphodiesterase ; Phosphodiesterase 4 Inhibitors - therapeutic use ; Phosphodiesterase IV ; Pruritus - drug therapy ; Psoriasis ; Psoriasis - drug therapy ; Skin diseases ; Staphylococcal Infections - drug therapy ; Staphylococcus aureus ; Staphylococcus infections</subject><ispartof>Experimental dermatology, 2023-04, Vol.32 (4), p.425-435</ispartof><rights>2022 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3692-84cbc39e41fed0b95e8f7ed308caf59db01324cdaba3cd633a876aff0a09caea3</cites><orcidid>0000-0003-3447-1284 ; 0000-0002-8332-2210 ; 0000-0001-8213-3621 ; 0000-0002-9750-7718 ; 0000-0002-0022-2848 ; 0000-0002-8212-8985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexd.14722$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexd.14722$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36461082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Youn, Christine</creatorcontrib><creatorcontrib>Dikeman, Dustin A.</creatorcontrib><creatorcontrib>Chang, Evelyn</creatorcontrib><creatorcontrib>Liu, Haiyun</creatorcontrib><creatorcontrib>Nolan, Sabrina J.</creatorcontrib><creatorcontrib>Alphonse, Martin P.</creatorcontrib><creatorcontrib>Joyce, Daniel P.</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Meixiong, James</creatorcontrib><creatorcontrib>Dong, Xinzhong</creatorcontrib><creatorcontrib>Miller, Lloyd S.</creatorcontrib><creatorcontrib>Archer, Nathan K.</creatorcontrib><title>Crisaborole efficacy in murine models of skin inflammation and Staphylococcus aureus infection</title><title>Experimental dermatology</title><addtitle>Exp Dermatol</addtitle><description>Phosphodiesterase 4 (PDE4) is highly expressed in keratinocytes and immune cells and promotes pro‐inflammatory responses upon activation. The activity of PDE4 has been attributed to various inflammatory conditions, leading to the development and approval of PDE4 inhibitors as host‐directed therapeutics in humans. For example, the topical PDE4 inhibitor, crisaborole, is approved for the treatment of mild‐to‐moderate atopic dermatitis and has shown efficacy in patients with psoriasis. However, the role of crisaborole in regulating the immunopathogenesis of inflammatory skin diseases and infection is not entirely known. Therefore, we evaluated the effects of crisaborole in multiple mouse models, including psoriasis‐like dermatitis, AD‐like skin inflammation with and without filaggrin mutations, and Staphylococcus aureus skin infection. We discovered that crisaborole dampens myeloid cells and itch in the skin during psoriasis‐like dermatitis. Furthermore, crisaborole was effective in reducing skin inflammation in the context of filaggrin deficiency. Importantly, crisaborole reduced S. aureus skin colonization during AD‐like skin inflammation. However, crisaborole was not efficacious in treating S. aureus skin infections, even as adjunctive therapy to antibiotics. Taken together, we found that crisaborole reduced itch during psoriasis‐like dermatitis and decreased S. aureus skin colonization upon AD‐like skin inflammation, which act as additional mechanisms by which crisaborole dampens the immunopathogenesis in mouse models of inflammatory skin diseases. Further examination is warranted to translate these preclinical findings to human disease.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Atopic dermatitis</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - therapeutic use</subject><subject>Colonization</subject><subject>crisaborole</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 4</subject><subject>Dermatitis</subject><subject>Dermatitis, Atopic - drug therapy</subject><subject>Disease Models, Animal</subject><subject>Filaggrin</subject><subject>Filaggrin Proteins</subject><subject>Humans</subject><subject>Immunopathogenesis</subject><subject>Inflammation</subject><subject>Inflammation - drug therapy</subject><subject>Keratinocytes</subject><subject>Mice</subject><subject>Myeloid cells</subject><subject>Phosphodiesterase</subject><subject>Phosphodiesterase 4 Inhibitors - therapeutic use</subject><subject>Phosphodiesterase IV</subject><subject>Pruritus - drug therapy</subject><subject>Psoriasis</subject><subject>Psoriasis - drug therapy</subject><subject>Skin diseases</subject><subject>Staphylococcal Infections - drug therapy</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus infections</subject><issn>0906-6705</issn><issn>1600-0625</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10U1rFTEUBuAgFnutLvwDMuCmLqY9mWSSmZXItX5AwYUKrgxnMic2dSa5Jneq99839daigtkcSB5eTngZe8LhhJdzSj_HEy5109xjK64AalBNe5-toAdVKw3tIXuY8yUA10K3D9ihUFJx6JoV-7JOPuMQU5yoIue8RburfKjmJflA1RxHmnIVXZW_lVsf3ITzjFsfQ4VhrD5scXOxm6KN1i65wiVRGYWRvTGP2IHDKdPj23nEPr0--7h-W5-_f_Nu_fK8tkL1Td1JO1jRk-SORhj6ljqnaRTQWXRtPw7ARSPtiAMKOyohsNMKnQOE3iKhOGIv9rmbZZhptBS2CSezSX7GtDMRvfn7JfgL8zVeGQ6gVCegJBzfJqT4faG8NbPPlqYJA8Ulm0ZLJXqpZVPos3_oZVxSKP8rqheScy15Uc_3yqaYcyJ3tw0Hc1ObKbWZX7UV-_TP9e_k754KON2DH36i3f-TzNnnV_vIa-QRpJI</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Youn, Christine</creator><creator>Dikeman, Dustin A.</creator><creator>Chang, Evelyn</creator><creator>Liu, Haiyun</creator><creator>Nolan, Sabrina J.</creator><creator>Alphonse, Martin P.</creator><creator>Joyce, Daniel P.</creator><creator>Liu, Qi</creator><creator>Meixiong, James</creator><creator>Dong, Xinzhong</creator><creator>Miller, Lloyd S.</creator><creator>Archer, Nathan K.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3447-1284</orcidid><orcidid>https://orcid.org/0000-0002-8332-2210</orcidid><orcidid>https://orcid.org/0000-0001-8213-3621</orcidid><orcidid>https://orcid.org/0000-0002-9750-7718</orcidid><orcidid>https://orcid.org/0000-0002-0022-2848</orcidid><orcidid>https://orcid.org/0000-0002-8212-8985</orcidid></search><sort><creationdate>202304</creationdate><title>Crisaborole efficacy in murine models of skin inflammation and Staphylococcus aureus infection</title><author>Youn, Christine ; Dikeman, Dustin A. ; Chang, Evelyn ; Liu, Haiyun ; Nolan, Sabrina J. ; Alphonse, Martin P. ; Joyce, Daniel P. ; Liu, Qi ; Meixiong, James ; Dong, Xinzhong ; Miller, Lloyd S. ; Archer, Nathan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3692-84cbc39e41fed0b95e8f7ed308caf59db01324cdaba3cd633a876aff0a09caea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Atopic dermatitis</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - therapeutic use</topic><topic>Colonization</topic><topic>crisaborole</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 4</topic><topic>Dermatitis</topic><topic>Dermatitis, Atopic - drug therapy</topic><topic>Disease Models, Animal</topic><topic>Filaggrin</topic><topic>Filaggrin Proteins</topic><topic>Humans</topic><topic>Immunopathogenesis</topic><topic>Inflammation</topic><topic>Inflammation - drug therapy</topic><topic>Keratinocytes</topic><topic>Mice</topic><topic>Myeloid cells</topic><topic>Phosphodiesterase</topic><topic>Phosphodiesterase 4 Inhibitors - therapeutic use</topic><topic>Phosphodiesterase IV</topic><topic>Pruritus - drug therapy</topic><topic>Psoriasis</topic><topic>Psoriasis - drug therapy</topic><topic>Skin diseases</topic><topic>Staphylococcal Infections - drug therapy</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youn, Christine</creatorcontrib><creatorcontrib>Dikeman, Dustin A.</creatorcontrib><creatorcontrib>Chang, Evelyn</creatorcontrib><creatorcontrib>Liu, Haiyun</creatorcontrib><creatorcontrib>Nolan, Sabrina J.</creatorcontrib><creatorcontrib>Alphonse, Martin P.</creatorcontrib><creatorcontrib>Joyce, Daniel P.</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Meixiong, James</creatorcontrib><creatorcontrib>Dong, Xinzhong</creatorcontrib><creatorcontrib>Miller, Lloyd S.</creatorcontrib><creatorcontrib>Archer, Nathan K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental dermatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youn, Christine</au><au>Dikeman, Dustin A.</au><au>Chang, Evelyn</au><au>Liu, Haiyun</au><au>Nolan, Sabrina J.</au><au>Alphonse, Martin P.</au><au>Joyce, Daniel P.</au><au>Liu, Qi</au><au>Meixiong, James</au><au>Dong, Xinzhong</au><au>Miller, Lloyd S.</au><au>Archer, Nathan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crisaborole efficacy in murine models of skin inflammation and Staphylococcus aureus infection</atitle><jtitle>Experimental dermatology</jtitle><addtitle>Exp Dermatol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>425</spage><epage>435</epage><pages>425-435</pages><issn>0906-6705</issn><eissn>1600-0625</eissn><abstract>Phosphodiesterase 4 (PDE4) is highly expressed in keratinocytes and immune cells and promotes pro‐inflammatory responses upon activation. The activity of PDE4 has been attributed to various inflammatory conditions, leading to the development and approval of PDE4 inhibitors as host‐directed therapeutics in humans. For example, the topical PDE4 inhibitor, crisaborole, is approved for the treatment of mild‐to‐moderate atopic dermatitis and has shown efficacy in patients with psoriasis. However, the role of crisaborole in regulating the immunopathogenesis of inflammatory skin diseases and infection is not entirely known. Therefore, we evaluated the effects of crisaborole in multiple mouse models, including psoriasis‐like dermatitis, AD‐like skin inflammation with and without filaggrin mutations, and Staphylococcus aureus skin infection. We discovered that crisaborole dampens myeloid cells and itch in the skin during psoriasis‐like dermatitis. Furthermore, crisaborole was effective in reducing skin inflammation in the context of filaggrin deficiency. Importantly, crisaborole reduced S. aureus skin colonization during AD‐like skin inflammation. However, crisaborole was not efficacious in treating S. aureus skin infections, even as adjunctive therapy to antibiotics. Taken together, we found that crisaborole reduced itch during psoriasis‐like dermatitis and decreased S. aureus skin colonization upon AD‐like skin inflammation, which act as additional mechanisms by which crisaborole dampens the immunopathogenesis in mouse models of inflammatory skin diseases. Further examination is warranted to translate these preclinical findings to human disease.</abstract><cop>Denmark</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36461082</pmid><doi>10.1111/exd.14722</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3447-1284</orcidid><orcidid>https://orcid.org/0000-0002-8332-2210</orcidid><orcidid>https://orcid.org/0000-0001-8213-3621</orcidid><orcidid>https://orcid.org/0000-0002-9750-7718</orcidid><orcidid>https://orcid.org/0000-0002-0022-2848</orcidid><orcidid>https://orcid.org/0000-0002-8212-8985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0906-6705
ispartof Experimental dermatology, 2023-04, Vol.32 (4), p.425-435
issn 0906-6705
1600-0625
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066830
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal models
Animals
Antibiotics
Atopic dermatitis
Bridged Bicyclo Compounds, Heterocyclic - pharmacology
Bridged Bicyclo Compounds, Heterocyclic - therapeutic use
Colonization
crisaborole
Cyclic Nucleotide Phosphodiesterases, Type 4
Dermatitis
Dermatitis, Atopic - drug therapy
Disease Models, Animal
Filaggrin
Filaggrin Proteins
Humans
Immunopathogenesis
Inflammation
Inflammation - drug therapy
Keratinocytes
Mice
Myeloid cells
Phosphodiesterase
Phosphodiesterase 4 Inhibitors - therapeutic use
Phosphodiesterase IV
Pruritus - drug therapy
Psoriasis
Psoriasis - drug therapy
Skin diseases
Staphylococcal Infections - drug therapy
Staphylococcus aureus
Staphylococcus infections
title Crisaborole efficacy in murine models of skin inflammation and Staphylococcus aureus infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crisaborole%20efficacy%20in%20murine%20models%20of%20skin%20inflammation%20and%20Staphylococcus%20aureus%20infection&rft.jtitle=Experimental%20dermatology&rft.au=Youn,%20Christine&rft.date=2023-04&rft.volume=32&rft.issue=4&rft.spage=425&rft.epage=435&rft.pages=425-435&rft.issn=0906-6705&rft.eissn=1600-0625&rft_id=info:doi/10.1111/exd.14722&rft_dat=%3Cproquest_pubme%3E2793411741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793411741&rft_id=info:pmid/36461082&rfr_iscdi=true