Lignin deconstruction by anaerobic fungi
Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestratio...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2023-04, Vol.8 (4), p.596-610 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 610 |
---|---|
container_issue | 4 |
container_start_page | 596 |
container_title | Nature microbiology |
container_volume | 8 |
creator | Lankiewicz, Thomas S. Choudhary, Hemant Gao, Yu Amer, Bashar Lillington, Stephen P. Leggieri, Patrick A. Brown, Jennifer L. Swift, Candice L. Lipzen, Anna Na, Hyunsoo Amirebrahimi, Mojgan Theodorou, Michael K. Baidoo, Edward E. K. Barry, Kerrie Grigoriev, Igor V. Timokhin, Vitaliy I. Gladden, John Singh, Seema Mortimer, Jenny C. Ralph, John Simmons, Blake A. Singer, Steven W. O’Malley, Michelle A. |
description | Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
Fungi from the Neocallimastigomycetes taxonomic class break bonds in lignin during the anaerobic deconstruction of whole plant cell walls. This finding challenges the paradigm that only certain aerobic organisms break down lignin. |
doi_str_mv | 10.1038/s41564-023-01336-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793281382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-437dfd0c03f616947ab30baf94db14c59ddc787be569539f020dcfe13660eff3</originalsourceid><addsrcrecordid>eNp9kT1PHDEQhq0oCBDcH6CITklDszD-2Fm7iiKUL-kkmustr9c-jO5ssHcj8e_xsQRICipbmsfPzPgl5IzCBQUuL4ugLYoGGG-Aco6N_ECOGbSyaVmHH9_cj8iilFsAoMgQJR6SI45SCeTimJyvwiaGuBycTbGMebJjSHHZPyxNNC6nPtiln-ImnJIDb7bFLZ7PE7L-8X199atZXf_8ffVt1dgW2NgI3g1-AAvcI0UlOtNz6I1XYuipsK0aBtvJrnctqpYrDwwG6x3liOC85yfk66y9m_qdG6yLYzZbfZfDzuQHnUzQ_1ZiuNGb9EdTgKrgoho-z4ZUxqCLDaOzN3W56OyoqUJAKit0_twmp_vJlVHvQrFuuzXRpalo1kkExTrYo1_-Q2_TlGP9g0opziTlklWKzZTNqZTs_MvIFPQ-MD0Hpmtg-ikwvVd_ervsy5O_8VSAz0Cppbhx-bX3O9pHxHGfnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793281382</pqid></control><display><type>article</type><title>Lignin deconstruction by anaerobic fungi</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Lankiewicz, Thomas S. ; Choudhary, Hemant ; Gao, Yu ; Amer, Bashar ; Lillington, Stephen P. ; Leggieri, Patrick A. ; Brown, Jennifer L. ; Swift, Candice L. ; Lipzen, Anna ; Na, Hyunsoo ; Amirebrahimi, Mojgan ; Theodorou, Michael K. ; Baidoo, Edward E. K. ; Barry, Kerrie ; Grigoriev, Igor V. ; Timokhin, Vitaliy I. ; Gladden, John ; Singh, Seema ; Mortimer, Jenny C. ; Ralph, John ; Simmons, Blake A. ; Singer, Steven W. ; O’Malley, Michelle A.</creator><creatorcontrib>Lankiewicz, Thomas S. ; Choudhary, Hemant ; Gao, Yu ; Amer, Bashar ; Lillington, Stephen P. ; Leggieri, Patrick A. ; Brown, Jennifer L. ; Swift, Candice L. ; Lipzen, Anna ; Na, Hyunsoo ; Amirebrahimi, Mojgan ; Theodorou, Michael K. ; Baidoo, Edward E. K. ; Barry, Kerrie ; Grigoriev, Igor V. ; Timokhin, Vitaliy I. ; Gladden, John ; Singh, Seema ; Mortimer, Jenny C. ; Ralph, John ; Simmons, Blake A. ; Singer, Steven W. ; O’Malley, Michelle A. ; USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States) ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
Fungi from the Neocallimastigomycetes taxonomic class break bonds in lignin during the anaerobic deconstruction of whole plant cell walls. This finding challenges the paradigm that only certain aerobic organisms break down lignin.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-023-01336-8</identifier><identifier>PMID: 36894634</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 38 ; 38/39 ; 45/91 ; 631/326/193 ; 631/326/2522 ; 631/45/603 ; Anaerobiosis ; BASIC BIOLOGICAL SCIENCES ; Biodegradation ; Biomass ; Biomedical and Life Sciences ; Biosphere ; Biotechnology ; Carbon ; Cell walls ; Cellulose ; Cellulose - metabolism ; Fungi ; Fungi - genetics ; Fungi - metabolism ; Hardwoods ; Hemicellulose ; Infectious Diseases ; Life Sciences ; Lignin ; Lignin - metabolism ; Lignocellulose ; Medical Microbiology ; Microbiology ; NMR ; Nuclear magnetic resonance ; Parasitology ; Transcriptomes ; Virology</subject><ispartof>Nature microbiology, 2023-04, Vol.8 (4), p.596-610</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-437dfd0c03f616947ab30baf94db14c59ddc787be569539f020dcfe13660eff3</citedby><cites>FETCH-LOGICAL-c502t-437dfd0c03f616947ab30baf94db14c59ddc787be569539f020dcfe13660eff3</cites><orcidid>0000-0002-0326-2036 ; 0000-0002-1332-1810 ; 0000-0002-8696-442X ; 0000-0002-3136-8903 ; 0000-0001-6624-636X ; 0000-0002-5860-6203 ; 0000-0001-9209-5067 ; 0000-0002-6093-4521 ; 0000-0002-6065-8491 ; 0000-0002-4229-8314 ; 0000000258606203 ; 0000000260934521 ; 0000000260658491 ; 0000000192095067 ; 000000028696442X ; 000000016624636X ; 0000000203262036 ; 0000000231368903 ; 0000000213321810 ; 0000000242298314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-023-01336-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-023-01336-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36894634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1960618$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lankiewicz, Thomas S.</creatorcontrib><creatorcontrib>Choudhary, Hemant</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Amer, Bashar</creatorcontrib><creatorcontrib>Lillington, Stephen P.</creatorcontrib><creatorcontrib>Leggieri, Patrick A.</creatorcontrib><creatorcontrib>Brown, Jennifer L.</creatorcontrib><creatorcontrib>Swift, Candice L.</creatorcontrib><creatorcontrib>Lipzen, Anna</creatorcontrib><creatorcontrib>Na, Hyunsoo</creatorcontrib><creatorcontrib>Amirebrahimi, Mojgan</creatorcontrib><creatorcontrib>Theodorou, Michael K.</creatorcontrib><creatorcontrib>Baidoo, Edward E. K.</creatorcontrib><creatorcontrib>Barry, Kerrie</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Timokhin, Vitaliy I.</creatorcontrib><creatorcontrib>Gladden, John</creatorcontrib><creatorcontrib>Singh, Seema</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Simmons, Blake A.</creatorcontrib><creatorcontrib>Singer, Steven W.</creatorcontrib><creatorcontrib>O’Malley, Michelle A.</creatorcontrib><creatorcontrib>USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Lignin deconstruction by anaerobic fungi</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
Fungi from the Neocallimastigomycetes taxonomic class break bonds in lignin during the anaerobic deconstruction of whole plant cell walls. This finding challenges the paradigm that only certain aerobic organisms break down lignin.</description><subject>101/58</subject><subject>38</subject><subject>38/39</subject><subject>45/91</subject><subject>631/326/193</subject><subject>631/326/2522</subject><subject>631/45/603</subject><subject>Anaerobiosis</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodegradation</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biosphere</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Fungi</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>Hardwoods</subject><subject>Hemicellulose</subject><subject>Infectious Diseases</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Parasitology</subject><subject>Transcriptomes</subject><subject>Virology</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kT1PHDEQhq0oCBDcH6CITklDszD-2Fm7iiKUL-kkmustr9c-jO5ssHcj8e_xsQRICipbmsfPzPgl5IzCBQUuL4ugLYoGGG-Aco6N_ECOGbSyaVmHH9_cj8iilFsAoMgQJR6SI45SCeTimJyvwiaGuBycTbGMebJjSHHZPyxNNC6nPtiln-ImnJIDb7bFLZ7PE7L-8X199atZXf_8ffVt1dgW2NgI3g1-AAvcI0UlOtNz6I1XYuipsK0aBtvJrnctqpYrDwwG6x3liOC85yfk66y9m_qdG6yLYzZbfZfDzuQHnUzQ_1ZiuNGb9EdTgKrgoho-z4ZUxqCLDaOzN3W56OyoqUJAKit0_twmp_vJlVHvQrFuuzXRpalo1kkExTrYo1_-Q2_TlGP9g0opziTlklWKzZTNqZTs_MvIFPQ-MD0Hpmtg-ikwvVd_ervsy5O_8VSAz0Cppbhx-bX3O9pHxHGfnQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Lankiewicz, Thomas S.</creator><creator>Choudhary, Hemant</creator><creator>Gao, Yu</creator><creator>Amer, Bashar</creator><creator>Lillington, Stephen P.</creator><creator>Leggieri, Patrick A.</creator><creator>Brown, Jennifer L.</creator><creator>Swift, Candice L.</creator><creator>Lipzen, Anna</creator><creator>Na, Hyunsoo</creator><creator>Amirebrahimi, Mojgan</creator><creator>Theodorou, Michael K.</creator><creator>Baidoo, Edward E. K.</creator><creator>Barry, Kerrie</creator><creator>Grigoriev, Igor V.</creator><creator>Timokhin, Vitaliy I.</creator><creator>Gladden, John</creator><creator>Singh, Seema</creator><creator>Mortimer, Jenny C.</creator><creator>Ralph, John</creator><creator>Simmons, Blake A.</creator><creator>Singer, Steven W.</creator><creator>O’Malley, Michelle A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0326-2036</orcidid><orcidid>https://orcid.org/0000-0002-1332-1810</orcidid><orcidid>https://orcid.org/0000-0002-8696-442X</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0001-6624-636X</orcidid><orcidid>https://orcid.org/0000-0002-5860-6203</orcidid><orcidid>https://orcid.org/0000-0001-9209-5067</orcidid><orcidid>https://orcid.org/0000-0002-6093-4521</orcidid><orcidid>https://orcid.org/0000-0002-6065-8491</orcidid><orcidid>https://orcid.org/0000-0002-4229-8314</orcidid><orcidid>https://orcid.org/0000000258606203</orcidid><orcidid>https://orcid.org/0000000260934521</orcidid><orcidid>https://orcid.org/0000000260658491</orcidid><orcidid>https://orcid.org/0000000192095067</orcidid><orcidid>https://orcid.org/000000028696442X</orcidid><orcidid>https://orcid.org/000000016624636X</orcidid><orcidid>https://orcid.org/0000000203262036</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000213321810</orcidid><orcidid>https://orcid.org/0000000242298314</orcidid></search><sort><creationdate>20230401</creationdate><title>Lignin deconstruction by anaerobic fungi</title><author>Lankiewicz, Thomas S. ; Choudhary, Hemant ; Gao, Yu ; Amer, Bashar ; Lillington, Stephen P. ; Leggieri, Patrick A. ; Brown, Jennifer L. ; Swift, Candice L. ; Lipzen, Anna ; Na, Hyunsoo ; Amirebrahimi, Mojgan ; Theodorou, Michael K. ; Baidoo, Edward E. K. ; Barry, Kerrie ; Grigoriev, Igor V. ; Timokhin, Vitaliy I. ; Gladden, John ; Singh, Seema ; Mortimer, Jenny C. ; Ralph, John ; Simmons, Blake A. ; Singer, Steven W. ; O’Malley, Michelle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-437dfd0c03f616947ab30baf94db14c59ddc787be569539f020dcfe13660eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>101/58</topic><topic>38</topic><topic>38/39</topic><topic>45/91</topic><topic>631/326/193</topic><topic>631/326/2522</topic><topic>631/45/603</topic><topic>Anaerobiosis</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodegradation</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biosphere</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Fungi</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>Hardwoods</topic><topic>Hemicellulose</topic><topic>Infectious Diseases</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Parasitology</topic><topic>Transcriptomes</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lankiewicz, Thomas S.</creatorcontrib><creatorcontrib>Choudhary, Hemant</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Amer, Bashar</creatorcontrib><creatorcontrib>Lillington, Stephen P.</creatorcontrib><creatorcontrib>Leggieri, Patrick A.</creatorcontrib><creatorcontrib>Brown, Jennifer L.</creatorcontrib><creatorcontrib>Swift, Candice L.</creatorcontrib><creatorcontrib>Lipzen, Anna</creatorcontrib><creatorcontrib>Na, Hyunsoo</creatorcontrib><creatorcontrib>Amirebrahimi, Mojgan</creatorcontrib><creatorcontrib>Theodorou, Michael K.</creatorcontrib><creatorcontrib>Baidoo, Edward E. K.</creatorcontrib><creatorcontrib>Barry, Kerrie</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Timokhin, Vitaliy I.</creatorcontrib><creatorcontrib>Gladden, John</creatorcontrib><creatorcontrib>Singh, Seema</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Simmons, Blake A.</creatorcontrib><creatorcontrib>Singer, Steven W.</creatorcontrib><creatorcontrib>O’Malley, Michelle A.</creatorcontrib><creatorcontrib>USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lankiewicz, Thomas S.</au><au>Choudhary, Hemant</au><au>Gao, Yu</au><au>Amer, Bashar</au><au>Lillington, Stephen P.</au><au>Leggieri, Patrick A.</au><au>Brown, Jennifer L.</au><au>Swift, Candice L.</au><au>Lipzen, Anna</au><au>Na, Hyunsoo</au><au>Amirebrahimi, Mojgan</au><au>Theodorou, Michael K.</au><au>Baidoo, Edward E. K.</au><au>Barry, Kerrie</au><au>Grigoriev, Igor V.</au><au>Timokhin, Vitaliy I.</au><au>Gladden, John</au><au>Singh, Seema</au><au>Mortimer, Jenny C.</au><au>Ralph, John</au><au>Simmons, Blake A.</au><au>Singer, Steven W.</au><au>O’Malley, Michelle A.</au><aucorp>USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lignin deconstruction by anaerobic fungi</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>8</volume><issue>4</issue><spage>596</spage><epage>610</epage><pages>596-610</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
Fungi from the Neocallimastigomycetes taxonomic class break bonds in lignin during the anaerobic deconstruction of whole plant cell walls. This finding challenges the paradigm that only certain aerobic organisms break down lignin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36894634</pmid><doi>10.1038/s41564-023-01336-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0326-2036</orcidid><orcidid>https://orcid.org/0000-0002-1332-1810</orcidid><orcidid>https://orcid.org/0000-0002-8696-442X</orcidid><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0001-6624-636X</orcidid><orcidid>https://orcid.org/0000-0002-5860-6203</orcidid><orcidid>https://orcid.org/0000-0001-9209-5067</orcidid><orcidid>https://orcid.org/0000-0002-6093-4521</orcidid><orcidid>https://orcid.org/0000-0002-6065-8491</orcidid><orcidid>https://orcid.org/0000-0002-4229-8314</orcidid><orcidid>https://orcid.org/0000000258606203</orcidid><orcidid>https://orcid.org/0000000260934521</orcidid><orcidid>https://orcid.org/0000000260658491</orcidid><orcidid>https://orcid.org/0000000192095067</orcidid><orcidid>https://orcid.org/000000028696442X</orcidid><orcidid>https://orcid.org/000000016624636X</orcidid><orcidid>https://orcid.org/0000000203262036</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000213321810</orcidid><orcidid>https://orcid.org/0000000242298314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2023-04, Vol.8 (4), p.596-610 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10066034 |
source | MEDLINE; SpringerLink Journals |
subjects | 101/58 38 38/39 45/91 631/326/193 631/326/2522 631/45/603 Anaerobiosis BASIC BIOLOGICAL SCIENCES Biodegradation Biomass Biomedical and Life Sciences Biosphere Biotechnology Carbon Cell walls Cellulose Cellulose - metabolism Fungi Fungi - genetics Fungi - metabolism Hardwoods Hemicellulose Infectious Diseases Life Sciences Lignin Lignin - metabolism Lignocellulose Medical Microbiology Microbiology NMR Nuclear magnetic resonance Parasitology Transcriptomes Virology |
title | Lignin deconstruction by anaerobic fungi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lignin%20deconstruction%20by%20anaerobic%20fungi&rft.jtitle=Nature%20microbiology&rft.au=Lankiewicz,%20Thomas%20S.&rft.aucorp=USDOE%20Joint%20Genome%20Institute%20(JGI),%20Walnut%20Creek,%20CA%20(United%20States)&rft.date=2023-04-01&rft.volume=8&rft.issue=4&rft.spage=596&rft.epage=610&rft.pages=596-610&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-023-01336-8&rft_dat=%3Cproquest_pubme%3E2793281382%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793281382&rft_id=info:pmid/36894634&rfr_iscdi=true |