High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast

Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that sup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2022-07, Vol.11 (7), p.2284-2299
Hauptverfasser: Stieglitz, Jessica T., Van Deventer, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2299
container_issue 7
container_start_page 2284
container_title ACS synthetic biology
container_volume 11
creator Stieglitz, Jessica T.
Van Deventer, James A.
description Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in Escherichia coli but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.
doi_str_mv 10.1021/acssynbio.1c00626
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10065163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2686055810</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-f247a24a23debea547fc9467c895003f821beb9dd2b59cb8fec5ff8ea3b84bf93</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtapWBVF-QC9VjlwC_oizzgmtVhSQEJVaeuBk2c44Mcrai-2g7r-vq11WcOlcZqR5783oPYS-EnxOMCUXyqS09dqFc2Iwbmn7AR1T0pKa45Z9fDMfodOUnnApzhln4jM6YnzRMc6bY_R444axfhhjmIdxM-dquXY-KLOd6vzzfln92vo8QlYJqis_OA8QnR8qG2J1DR6yM9Uq9GX5Z6N8csFXzlePoFL-gj5ZNSU43fcT9Pv71cPqpr77cX27Wt7VqmEi15Y2C0UbRVkPGhRvFtZ0TbswouMYMyso0aC7vqead0YLC4ZbK0AxLRptO3aCLne6m1mvoTfgc1ST3ES3VnErg3Ly_ca7UQ7hRZLiGictKwpne4UYnmdIWa5dMjBNykOYk6StaIt3guACJTuoiSGlCPZwh2D5LxZ5iEXuYymcb28fPDBeQyiAegcoXPkU5uiLX_8R_AsV1pzW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686055810</pqid></control><display><type>article</type><title>High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast</title><source>MEDLINE</source><source>ACS Publications</source><creator>Stieglitz, Jessica T. ; Van Deventer, James A.</creator><creatorcontrib>Stieglitz, Jessica T. ; Van Deventer, James A.</creatorcontrib><description>Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in Escherichia coli but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.1c00626</identifier><identifier>PMID: 35793554</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acids - metabolism ; Amino Acyl-tRNA Synthetases - metabolism ; Codon, Terminator - genetics ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genetic Code - genetics ; Protein Engineering ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism</subject><ispartof>ACS synthetic biology, 2022-07, Vol.11 (7), p.2284-2299</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-f247a24a23debea547fc9467c895003f821beb9dd2b59cb8fec5ff8ea3b84bf93</citedby><cites>FETCH-LOGICAL-a438t-f247a24a23debea547fc9467c895003f821beb9dd2b59cb8fec5ff8ea3b84bf93</cites><orcidid>0000-0003-3845-0712 ; 0000-0003-4343-6157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssynbio.1c00626$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssynbio.1c00626$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35793554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stieglitz, Jessica T.</creatorcontrib><creatorcontrib>Van Deventer, James A.</creatorcontrib><title>High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in Escherichia coli but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.</description><subject>Amino Acids - metabolism</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Codon, Terminator - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genetic Code - genetics</subject><subject>Protein Engineering</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAQtapWBVF-QC9VjlwC_oizzgmtVhSQEJVaeuBk2c44Mcrai-2g7r-vq11WcOlcZqR5783oPYS-EnxOMCUXyqS09dqFc2Iwbmn7AR1T0pKa45Z9fDMfodOUnnApzhln4jM6YnzRMc6bY_R444axfhhjmIdxM-dquXY-KLOd6vzzfln92vo8QlYJqis_OA8QnR8qG2J1DR6yM9Uq9GX5Z6N8csFXzlePoFL-gj5ZNSU43fcT9Pv71cPqpr77cX27Wt7VqmEi15Y2C0UbRVkPGhRvFtZ0TbswouMYMyso0aC7vqead0YLC4ZbK0AxLRptO3aCLne6m1mvoTfgc1ST3ES3VnErg3Ly_ca7UQ7hRZLiGictKwpne4UYnmdIWa5dMjBNykOYk6StaIt3guACJTuoiSGlCPZwh2D5LxZ5iEXuYymcb28fPDBeQyiAegcoXPkU5uiLX_8R_AsV1pzW</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Stieglitz, Jessica T.</creator><creator>Van Deventer, James A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3845-0712</orcidid><orcidid>https://orcid.org/0000-0003-4343-6157</orcidid></search><sort><creationdate>20220715</creationdate><title>High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast</title><author>Stieglitz, Jessica T. ; Van Deventer, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-f247a24a23debea547fc9467c895003f821beb9dd2b59cb8fec5ff8ea3b84bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino Acids - metabolism</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Codon, Terminator - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genetic Code - genetics</topic><topic>Protein Engineering</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stieglitz, Jessica T.</creatorcontrib><creatorcontrib>Van Deventer, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stieglitz, Jessica T.</au><au>Van Deventer, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2022-07-15</date><risdate>2022</risdate><volume>11</volume><issue>7</issue><spage>2284</spage><epage>2299</epage><pages>2284-2299</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in Escherichia coli but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35793554</pmid><doi>10.1021/acssynbio.1c00626</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3845-0712</orcidid><orcidid>https://orcid.org/0000-0003-4343-6157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2161-5063
ispartof ACS synthetic biology, 2022-07, Vol.11 (7), p.2284-2299
issn 2161-5063
2161-5063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10065163
source MEDLINE; ACS Publications
subjects Amino Acids - metabolism
Amino Acyl-tRNA Synthetases - metabolism
Codon, Terminator - genetics
Escherichia coli - genetics
Escherichia coli - metabolism
Genetic Code - genetics
Protein Engineering
RNA, Transfer - genetics
RNA, Transfer - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
title High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Aminoacyl-tRNA%20Synthetase%20Engineering%20for%20Genetic%20Code%20Expansion%20in%20Yeast&rft.jtitle=ACS%20synthetic%20biology&rft.au=Stieglitz,%20Jessica%20T.&rft.date=2022-07-15&rft.volume=11&rft.issue=7&rft.spage=2284&rft.epage=2299&rft.pages=2284-2299&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.1c00626&rft_dat=%3Cproquest_pubme%3E2686055810%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686055810&rft_id=info:pmid/35793554&rfr_iscdi=true