Revealing the Role of CO during CO2 Hydrogenation on Cu Surfaces with In Situ Soft X‑Ray Spectroscopy
The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-03, Vol.145 (12), p.6730-6740 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6740 |
---|---|
container_issue | 12 |
container_start_page | 6730 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Swallow, Jack E. N. Jones, Elizabeth S. Head, Ashley R. Gibson, Joshua S. David, Roey Ben Fraser, Michael W. van Spronsen, Matthijs A. Xu, Shaojun Held, Georg Eren, Baran Weatherup, Robert S. |
description | The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support. |
doi_str_mv | 10.1021/jacs.2c12728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10064333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786813510</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-9bfcd58bbc395c4106b49b9f989fc45747ef55e4b31ff95d57a5ee7d254124453</originalsourceid><addsrcrecordid>eNpVkdtKAzEQhoMoWqt3PkAuvVnNcQ9XIosnEAqtgnchm520W7abmmQrvfMVfEWfxC0WxGFgmH-GH2Y-hC4ouaKE0eulNuGKGcoylh-gEZWMJJKy9BCNCCEsyfKUn6DTEJZDK1hOj9EJTwuaMsFGaD6FDei26eY4LgBPXQvYWVxOcN37nVpOGH7c1t7NodOxcR0esuzxrPdWGwj4o4kL_NThWRMH1dmI374_v6Z6i2drMNG7YNx6e4aOrG4DnO_rGL3e372Uj8nz5OGpvH1ONKcyJkVlTS3zqjK8kEZQklaiqApb5IU1QmYiAysliIpTawtZy0xLgKxmUlAmhORjdPPru-6rFdQGuuh1q9a-WWm_VU436v-kaxZq7jaKEpIKPsQYXe4dvHvvIUS1aoKBttUduD4oNjw0p1xS8rc6IFBL1_tuOG1wUjswagdG7cHwH6ekgOs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786813510</pqid></control><display><type>article</type><title>Revealing the Role of CO during CO2 Hydrogenation on Cu Surfaces with In Situ Soft X‑Ray Spectroscopy</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Swallow, Jack E. N. ; Jones, Elizabeth S. ; Head, Ashley R. ; Gibson, Joshua S. ; David, Roey Ben ; Fraser, Michael W. ; van Spronsen, Matthijs A. ; Xu, Shaojun ; Held, Georg ; Eren, Baran ; Weatherup, Robert S.</creator><creatorcontrib>Swallow, Jack E. N. ; Jones, Elizabeth S. ; Head, Ashley R. ; Gibson, Joshua S. ; David, Roey Ben ; Fraser, Michael W. ; van Spronsen, Matthijs A. ; Xu, Shaojun ; Held, Georg ; Eren, Baran ; Weatherup, Robert S.</creatorcontrib><description>The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c12728</identifier><identifier>PMID: 36916242</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-03, Vol.145 (12), p.6730-6740</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0521-8127 ; 0000-0003-0726-4183 ; 0000-0002-8026-8714 ; 0000-0002-3993-9045 ; 0000-0001-8733-0165 ; 0000-0002-5136-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.2c12728$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.2c12728$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Jones, Elizabeth S.</creatorcontrib><creatorcontrib>Head, Ashley R.</creatorcontrib><creatorcontrib>Gibson, Joshua S.</creatorcontrib><creatorcontrib>David, Roey Ben</creatorcontrib><creatorcontrib>Fraser, Michael W.</creatorcontrib><creatorcontrib>van Spronsen, Matthijs A.</creatorcontrib><creatorcontrib>Xu, Shaojun</creatorcontrib><creatorcontrib>Held, Georg</creatorcontrib><creatorcontrib>Eren, Baran</creatorcontrib><creatorcontrib>Weatherup, Robert S.</creatorcontrib><title>Revealing the Role of CO during CO2 Hydrogenation on Cu Surfaces with In Situ Soft X‑Ray Spectroscopy</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkdtKAzEQhoMoWqt3PkAuvVnNcQ9XIosnEAqtgnchm520W7abmmQrvfMVfEWfxC0WxGFgmH-GH2Y-hC4ouaKE0eulNuGKGcoylh-gEZWMJJKy9BCNCCEsyfKUn6DTEJZDK1hOj9EJTwuaMsFGaD6FDei26eY4LgBPXQvYWVxOcN37nVpOGH7c1t7NodOxcR0esuzxrPdWGwj4o4kL_NThWRMH1dmI374_v6Z6i2drMNG7YNx6e4aOrG4DnO_rGL3e372Uj8nz5OGpvH1ONKcyJkVlTS3zqjK8kEZQklaiqApb5IU1QmYiAysliIpTawtZy0xLgKxmUlAmhORjdPPru-6rFdQGuuh1q9a-WWm_VU436v-kaxZq7jaKEpIKPsQYXe4dvHvvIUS1aoKBttUduD4oNjw0p1xS8rc6IFBL1_tuOG1wUjswagdG7cHwH6ekgOs</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Swallow, Jack E. N.</creator><creator>Jones, Elizabeth S.</creator><creator>Head, Ashley R.</creator><creator>Gibson, Joshua S.</creator><creator>David, Roey Ben</creator><creator>Fraser, Michael W.</creator><creator>van Spronsen, Matthijs A.</creator><creator>Xu, Shaojun</creator><creator>Held, Georg</creator><creator>Eren, Baran</creator><creator>Weatherup, Robert S.</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0521-8127</orcidid><orcidid>https://orcid.org/0000-0003-0726-4183</orcidid><orcidid>https://orcid.org/0000-0002-8026-8714</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0001-8733-0165</orcidid><orcidid>https://orcid.org/0000-0002-5136-2816</orcidid></search><sort><creationdate>20230329</creationdate><title>Revealing the Role of CO during CO2 Hydrogenation on Cu Surfaces with In Situ Soft X‑Ray Spectroscopy</title><author>Swallow, Jack E. N. ; Jones, Elizabeth S. ; Head, Ashley R. ; Gibson, Joshua S. ; David, Roey Ben ; Fraser, Michael W. ; van Spronsen, Matthijs A. ; Xu, Shaojun ; Held, Georg ; Eren, Baran ; Weatherup, Robert S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-9bfcd58bbc395c4106b49b9f989fc45747ef55e4b31ff95d57a5ee7d254124453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Jones, Elizabeth S.</creatorcontrib><creatorcontrib>Head, Ashley R.</creatorcontrib><creatorcontrib>Gibson, Joshua S.</creatorcontrib><creatorcontrib>David, Roey Ben</creatorcontrib><creatorcontrib>Fraser, Michael W.</creatorcontrib><creatorcontrib>van Spronsen, Matthijs A.</creatorcontrib><creatorcontrib>Xu, Shaojun</creatorcontrib><creatorcontrib>Held, Georg</creatorcontrib><creatorcontrib>Eren, Baran</creatorcontrib><creatorcontrib>Weatherup, Robert S.</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swallow, Jack E. N.</au><au>Jones, Elizabeth S.</au><au>Head, Ashley R.</au><au>Gibson, Joshua S.</au><au>David, Roey Ben</au><au>Fraser, Michael W.</au><au>van Spronsen, Matthijs A.</au><au>Xu, Shaojun</au><au>Held, Georg</au><au>Eren, Baran</au><au>Weatherup, Robert S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Role of CO during CO2 Hydrogenation on Cu Surfaces with In Situ Soft X‑Ray Spectroscopy</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-03-29</date><risdate>2023</risdate><volume>145</volume><issue>12</issue><spage>6730</spage><epage>6740</epage><pages>6730-6740</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.</abstract><pub>American Chemical Society</pub><pmid>36916242</pmid><doi>10.1021/jacs.2c12728</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0521-8127</orcidid><orcidid>https://orcid.org/0000-0003-0726-4183</orcidid><orcidid>https://orcid.org/0000-0002-8026-8714</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0001-8733-0165</orcidid><orcidid>https://orcid.org/0000-0002-5136-2816</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-03, Vol.145 (12), p.6730-6740 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10064333 |
source | ACS Journals: American Chemical Society Web Editions |
title | Revealing the Role of CO during CO2 Hydrogenation on Cu Surfaces with In Situ Soft X‑Ray Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Role%20of%20CO%20during%20CO2%20Hydrogenation%20on%20Cu%20Surfaces%20with%20In%20Situ%20Soft%20X%E2%80%91Ray%20Spectroscopy&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Swallow,%20Jack%20E.%20N.&rft.date=2023-03-29&rft.volume=145&rft.issue=12&rft.spage=6730&rft.epage=6740&rft.pages=6730-6740&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c12728&rft_dat=%3Cproquest_pubme%3E2786813510%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786813510&rft_id=info:pmid/36916242&rfr_iscdi=true |