Hot Deformation Behaviour of Additively Manufactured 18Ni-300 Maraging Steel

In this article, hot compression tests on the additively produced 18Ni-300 maraging steel 18Ni-300 were carried out on the Gleeble thermomechanical simulator in a wide temperature range (900-1200 °C) and at strain rates of 0.001 10 s . The samples were microstructurally analysed by light microscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-03, Vol.16 (6), p.2412
Hauptverfasser: Tomiczek, Błażej, Snopiński, Przemysław, Borek, Wojciech, Król, Mariusz, Gutiérrez, Ana Romero, Matula, Grzegorz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 2412
container_title Materials
container_volume 16
creator Tomiczek, Błażej
Snopiński, Przemysław
Borek, Wojciech
Król, Mariusz
Gutiérrez, Ana Romero
Matula, Grzegorz
description In this article, hot compression tests on the additively produced 18Ni-300 maraging steel 18Ni-300 were carried out on the Gleeble thermomechanical simulator in a wide temperature range (900-1200 °C) and at strain rates of 0.001 10 s . The samples were microstructurally analysed by light microscopy and scanning electron microscopy with electron backscatter diffraction (EBSD). This showed that dynamic recrystallization (DRX) was predominant in the samples tested at high strain rates and high deformation temperatures. In contrast, dynamic recovery (DRV) dominated at lower deformation temperatures and strain rates. Subsequently, the material constants were evaluated in a constitutive relationship using the experimental flow stress data. The results confirmed that the specimens are well hot workable and, compared with the literature data, have similar activation energy for hot working as the conventionally fabricated specimens. The findings presented in this research article can be used to develop novel hybrid postprocessing technologies that enable single-stage net shape forging/forming of AM maraging steel parts at reduced forming forces and with improved density and mechanical properties.
doi_str_mv 10.3390/ma16062412
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10058984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743766855</galeid><sourcerecordid>A743766855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-836e9ebf4a1146f79d34dc0f48a26dfdc2d9ed8d387bcb09d66238b02c8d97723</originalsourceid><addsrcrecordid>eNpdkUtv3CAUhVGVKonSbPIDKkvZRJWc8jKPVTSdPlJp2i7arhGGy4TIhhTbI-Xfl2jSNC0sQJfvHjgchM4IvmRM47ejJQILygl9gY6J1qIlmvODZ_sjdDpNt7gOxoii-hAdMaEVp5oeo811npv3EHIZ7Rxzat7Bjd3FvJQmh2blfZzjDob75otNS7BuXgr4hqivsWUY12qx25i2zfcZYHiFXgY7THD6uJ6gnx8__Fhft5tvnz6vV5vWcS7mVjEBGvrALSFcBKk9497hwJWlwgfvqNfglWdK9q7H2gtBmeoxdcprKSk7QVd73bulH8E7SHOxg7krcbTl3mQbzb8nKd6Ybd4ZgnGnqvWqcPGoUPKvBabZjHFyMAw2QV4mQ6WmHe6YFhU9_w-9rb-Tqr8HighJlZSVutxTWzuAiSnkerGr08MYXU4QYq2vJGdSCNV1teHNvsGVPE0FwtPzCTYPyZq_yVb49XPDT-ifHNlvYuGcrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791672877</pqid></control><display><type>article</type><title>Hot Deformation Behaviour of Additively Manufactured 18Ni-300 Maraging Steel</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Tomiczek, Błażej ; Snopiński, Przemysław ; Borek, Wojciech ; Król, Mariusz ; Gutiérrez, Ana Romero ; Matula, Grzegorz</creator><creatorcontrib>Tomiczek, Błażej ; Snopiński, Przemysław ; Borek, Wojciech ; Król, Mariusz ; Gutiérrez, Ana Romero ; Matula, Grzegorz</creatorcontrib><description>In this article, hot compression tests on the additively produced 18Ni-300 maraging steel 18Ni-300 were carried out on the Gleeble thermomechanical simulator in a wide temperature range (900-1200 °C) and at strain rates of 0.001 10 s . The samples were microstructurally analysed by light microscopy and scanning electron microscopy with electron backscatter diffraction (EBSD). This showed that dynamic recrystallization (DRX) was predominant in the samples tested at high strain rates and high deformation temperatures. In contrast, dynamic recovery (DRV) dominated at lower deformation temperatures and strain rates. Subsequently, the material constants were evaluated in a constitutive relationship using the experimental flow stress data. The results confirmed that the specimens are well hot workable and, compared with the literature data, have similar activation energy for hot working as the conventionally fabricated specimens. The findings presented in this research article can be used to develop novel hybrid postprocessing technologies that enable single-stage net shape forging/forming of AM maraging steel parts at reduced forming forces and with improved density and mechanical properties.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16062412</identifier><identifier>PMID: 36984292</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Activation energy ; Additive manufacturing ; Alloys ; Annealing ; Compression tests ; Constitutive relationships ; Deformation ; Dynamic recrystallization ; Electron back scatter ; Etching ; Forging ; High strain rate ; Hot pressing ; Hot working ; Lasers ; Maraging steels ; Mechanical properties ; Microstructure ; Net shape ; Optical microscopy ; Rapid prototyping ; Steel ; Temperature ; Thermal simulators ; Yield strength ; Yield stress</subject><ispartof>Materials, 2023-03, Vol.16 (6), p.2412</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-836e9ebf4a1146f79d34dc0f48a26dfdc2d9ed8d387bcb09d66238b02c8d97723</citedby><cites>FETCH-LOGICAL-c446t-836e9ebf4a1146f79d34dc0f48a26dfdc2d9ed8d387bcb09d66238b02c8d97723</cites><orcidid>0000-0002-6672-7734 ; 0000-0002-8292-4332 ; 0000-0002-4108-0903 ; 0000-0003-1235-0203 ; 0000-0002-6703-5019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058984/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058984/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36984292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomiczek, Błażej</creatorcontrib><creatorcontrib>Snopiński, Przemysław</creatorcontrib><creatorcontrib>Borek, Wojciech</creatorcontrib><creatorcontrib>Król, Mariusz</creatorcontrib><creatorcontrib>Gutiérrez, Ana Romero</creatorcontrib><creatorcontrib>Matula, Grzegorz</creatorcontrib><title>Hot Deformation Behaviour of Additively Manufactured 18Ni-300 Maraging Steel</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this article, hot compression tests on the additively produced 18Ni-300 maraging steel 18Ni-300 were carried out on the Gleeble thermomechanical simulator in a wide temperature range (900-1200 °C) and at strain rates of 0.001 10 s . The samples were microstructurally analysed by light microscopy and scanning electron microscopy with electron backscatter diffraction (EBSD). This showed that dynamic recrystallization (DRX) was predominant in the samples tested at high strain rates and high deformation temperatures. In contrast, dynamic recovery (DRV) dominated at lower deformation temperatures and strain rates. Subsequently, the material constants were evaluated in a constitutive relationship using the experimental flow stress data. The results confirmed that the specimens are well hot workable and, compared with the literature data, have similar activation energy for hot working as the conventionally fabricated specimens. The findings presented in this research article can be used to develop novel hybrid postprocessing technologies that enable single-stage net shape forging/forming of AM maraging steel parts at reduced forming forces and with improved density and mechanical properties.</description><subject>3-D printers</subject><subject>Activation energy</subject><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Annealing</subject><subject>Compression tests</subject><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Electron back scatter</subject><subject>Etching</subject><subject>Forging</subject><subject>High strain rate</subject><subject>Hot pressing</subject><subject>Hot working</subject><subject>Lasers</subject><subject>Maraging steels</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Net shape</subject><subject>Optical microscopy</subject><subject>Rapid prototyping</subject><subject>Steel</subject><subject>Temperature</subject><subject>Thermal simulators</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtv3CAUhVGVKonSbPIDKkvZRJWc8jKPVTSdPlJp2i7arhGGy4TIhhTbI-Xfl2jSNC0sQJfvHjgchM4IvmRM47ejJQILygl9gY6J1qIlmvODZ_sjdDpNt7gOxoii-hAdMaEVp5oeo811npv3EHIZ7Rxzat7Bjd3FvJQmh2blfZzjDob75otNS7BuXgr4hqivsWUY12qx25i2zfcZYHiFXgY7THD6uJ6gnx8__Fhft5tvnz6vV5vWcS7mVjEBGvrALSFcBKk9497hwJWlwgfvqNfglWdK9q7H2gtBmeoxdcprKSk7QVd73bulH8E7SHOxg7krcbTl3mQbzb8nKd6Ybd4ZgnGnqvWqcPGoUPKvBabZjHFyMAw2QV4mQ6WmHe6YFhU9_w-9rb-Tqr8HighJlZSVutxTWzuAiSnkerGr08MYXU4QYq2vJGdSCNV1teHNvsGVPE0FwtPzCTYPyZq_yVb49XPDT-ifHNlvYuGcrw</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Tomiczek, Błażej</creator><creator>Snopiński, Przemysław</creator><creator>Borek, Wojciech</creator><creator>Król, Mariusz</creator><creator>Gutiérrez, Ana Romero</creator><creator>Matula, Grzegorz</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6672-7734</orcidid><orcidid>https://orcid.org/0000-0002-8292-4332</orcidid><orcidid>https://orcid.org/0000-0002-4108-0903</orcidid><orcidid>https://orcid.org/0000-0003-1235-0203</orcidid><orcidid>https://orcid.org/0000-0002-6703-5019</orcidid></search><sort><creationdate>20230317</creationdate><title>Hot Deformation Behaviour of Additively Manufactured 18Ni-300 Maraging Steel</title><author>Tomiczek, Błażej ; Snopiński, Przemysław ; Borek, Wojciech ; Król, Mariusz ; Gutiérrez, Ana Romero ; Matula, Grzegorz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-836e9ebf4a1146f79d34dc0f48a26dfdc2d9ed8d387bcb09d66238b02c8d97723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Activation energy</topic><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Annealing</topic><topic>Compression tests</topic><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Electron back scatter</topic><topic>Etching</topic><topic>Forging</topic><topic>High strain rate</topic><topic>Hot pressing</topic><topic>Hot working</topic><topic>Lasers</topic><topic>Maraging steels</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Net shape</topic><topic>Optical microscopy</topic><topic>Rapid prototyping</topic><topic>Steel</topic><topic>Temperature</topic><topic>Thermal simulators</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomiczek, Błażej</creatorcontrib><creatorcontrib>Snopiński, Przemysław</creatorcontrib><creatorcontrib>Borek, Wojciech</creatorcontrib><creatorcontrib>Król, Mariusz</creatorcontrib><creatorcontrib>Gutiérrez, Ana Romero</creatorcontrib><creatorcontrib>Matula, Grzegorz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomiczek, Błażej</au><au>Snopiński, Przemysław</au><au>Borek, Wojciech</au><au>Król, Mariusz</au><au>Gutiérrez, Ana Romero</au><au>Matula, Grzegorz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot Deformation Behaviour of Additively Manufactured 18Ni-300 Maraging Steel</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-03-17</date><risdate>2023</risdate><volume>16</volume><issue>6</issue><spage>2412</spage><pages>2412-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this article, hot compression tests on the additively produced 18Ni-300 maraging steel 18Ni-300 were carried out on the Gleeble thermomechanical simulator in a wide temperature range (900-1200 °C) and at strain rates of 0.001 10 s . The samples were microstructurally analysed by light microscopy and scanning electron microscopy with electron backscatter diffraction (EBSD). This showed that dynamic recrystallization (DRX) was predominant in the samples tested at high strain rates and high deformation temperatures. In contrast, dynamic recovery (DRV) dominated at lower deformation temperatures and strain rates. Subsequently, the material constants were evaluated in a constitutive relationship using the experimental flow stress data. The results confirmed that the specimens are well hot workable and, compared with the literature data, have similar activation energy for hot working as the conventionally fabricated specimens. The findings presented in this research article can be used to develop novel hybrid postprocessing technologies that enable single-stage net shape forging/forming of AM maraging steel parts at reduced forming forces and with improved density and mechanical properties.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36984292</pmid><doi>10.3390/ma16062412</doi><orcidid>https://orcid.org/0000-0002-6672-7734</orcidid><orcidid>https://orcid.org/0000-0002-8292-4332</orcidid><orcidid>https://orcid.org/0000-0002-4108-0903</orcidid><orcidid>https://orcid.org/0000-0003-1235-0203</orcidid><orcidid>https://orcid.org/0000-0002-6703-5019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-03, Vol.16 (6), p.2412
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10058984
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects 3-D printers
Activation energy
Additive manufacturing
Alloys
Annealing
Compression tests
Constitutive relationships
Deformation
Dynamic recrystallization
Electron back scatter
Etching
Forging
High strain rate
Hot pressing
Hot working
Lasers
Maraging steels
Mechanical properties
Microstructure
Net shape
Optical microscopy
Rapid prototyping
Steel
Temperature
Thermal simulators
Yield strength
Yield stress
title Hot Deformation Behaviour of Additively Manufactured 18Ni-300 Maraging Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20Deformation%20Behaviour%20of%20Additively%20Manufactured%2018Ni-300%20Maraging%20Steel&rft.jtitle=Materials&rft.au=Tomiczek,%20B%C5%82a%C5%BCej&rft.date=2023-03-17&rft.volume=16&rft.issue=6&rft.spage=2412&rft.pages=2412-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16062412&rft_dat=%3Cgale_pubme%3EA743766855%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791672877&rft_id=info:pmid/36984292&rft_galeid=A743766855&rfr_iscdi=true