The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu)

The atom oxidation states were determined using the binding energies of the core S2p-, Cu2p-, Cr2p-, and Ln3d-levels in CuCr0.99Ln0.01S2 (Ln = Dy–Lu) solid solutions. The charge distribution on the matrix elements (Cu, Cr, and S) remained unaffected after cationic substitution. The sulfur atoms were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-03, Vol.16 (6), p.2431
Hauptverfasser: Korotaev, Evgeniy V., Syrokvashin, Mikhail M., Filatova, Irina Yu, Sotnikov, Aleksandr V., Kalinkin, Alexandr V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The atom oxidation states were determined using the binding energies of the core S2p-, Cu2p-, Cr2p-, and Ln3d-levels in CuCr0.99Ln0.01S2 (Ln = Dy–Lu) solid solutions. The charge distribution on the matrix elements (Cu, Cr, and S) remained unaffected after cationic substitution. The sulfur atoms were found to be in the S2− oxidation state, the copper–Cu+, and the chromium–Cr3+. The cationic substitution of the initial CuCrS2-matrix occurred via the isovalent mechanism. The obtained results were compared with the electrophysical properties for CuCr0.99Ln0.01S2. The measured carrier concentration was from 1017 to 1018 cm−3. The largest Seebeck coefficient value of 157 µV/K was measured for CuCr0.99Yb0.01S2 at 500 K. The cationic substitution with lanthanides allowed one to enhance the Seebeck coefficient of the initial CuCrS2-matrix.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16062431