Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers via second-order symmetry-adapted perturbation theory

The calculation of non-covalent interaction energies on noisy intermediate-scale quantum (NISQ) computers appears to be challenging with straightforward application of existing quantum algorithms. For example, the use of the standard supermolecular method with the variational quantum eigensolver (VQ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2023-03, Vol.14 (13), p.3587-3599
Hauptverfasser: Loipersberger, Matthias, Malone, Fionn D, Welden, Alicia R, Parrish, Robert M, Fox, Thomas, Degroote, Matthias, Kyoseva, Elica, Moll, Nikolaj, Santagati, Raffaele, Streif, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3599
container_issue 13
container_start_page 3587
container_title Chemical science (Cambridge)
container_volume 14
creator Loipersberger, Matthias
Malone, Fionn D
Welden, Alicia R
Parrish, Robert M
Fox, Thomas
Degroote, Matthias
Kyoseva, Elica
Moll, Nikolaj
Santagati, Raffaele
Streif, Michael
description The calculation of non-covalent interaction energies on noisy intermediate-scale quantum (NISQ) computers appears to be challenging with straightforward application of existing quantum algorithms. For example, the use of the standard supermolecular method with the variational quantum eigensolver (VQE) would require extremely precise resolution of the total energies of the fragments to provide for accurate subtraction to the interaction energy. Here we present a symmetry-adapted perturbation theory (SAPT) method that may provide interaction energies with high quantum resource efficiency. Of particular note, we present a quantum extended random-phase approximation (ERPA) treatment of the SAPT second-order induction and dispersion terms, including exchange counterparts. Together with previous work on first-order terms ( , 2022, , 3094), this provides a recipe for complete SAPT(VQE) interaction energies up to second order, which is a well established truncation. The SAPT interaction energy terms are computed as first-level observables with no subtraction of monomer energies invoked, and the only quantum observations needed are the VQE one- and two-particle density matrices. We find empirically that SAPT(VQE) can provide accurate interaction energies even with coarsely optimized, low circuit depth wavefunctions from a quantum computer, simulated through ideal statevectors. The errors of the total interaction energy are orders of magnitude lower than the corresponding VQE total energy errors of the monomer wavefunctions. In addition, we present heme-nitrosyl model complexes as a system class for near term quantum computing simulations. They are strongly correlated, biologically relevant and difficult to simulate with classical quantum chemical methods. This is illustrated with density functional theory (DFT) as the predicted interaction energies exhibit a strong sensitivity with respect to the choice of functional. Thus, this work paves the way to obtain accurate interaction energies on a NISQ-era quantum computer with few quantum resources. It is the first step in alleviating one of the major challenges in quantum chemistry, where in-depth knowledge of both the method and system is required to reliably generate accurate interaction energies.
doi_str_mv 10.1039/d2sc05896k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10055839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794684927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-e240386d7b82413f2dbf51aa5ef834b33bd5c1ddd110e56596051bb8f867c2633</originalsourceid><addsrcrecordid>eNpdkctu1TAURS1ERau2Ez4AWWKCkEL9iONkhKpbaBGVGADjyLFPWpfETv24Un6Cb8btLVdQT3ykvc5jayP0mpIPlPDuzLCoiWi75tcLdMRITatG8O7lvmbkEJ3GeEfK45wKJl-hQy4JaSShR-j3udY5qATYeVdpv1UTuIStSxCUTtY7DA7CjYWIS-28jetOncHY0ldFXVrwfVYu5RlrPy-5qBFvrcIRtHem8sFAwHGdZ0hhrZRRSwKDFwgph0E9bkm34MN6gg5GNUU4ffqP0c_Pn35srqrrb5dfNufXla6JTBWwmvC2MXJoWU35yMwwCqqUgLHl9cD5YISmxhhKCYhGdA0RdBjasW2kZg3nx-jjbu6Sh2JEF89BTf0S7KzC2ntl-_8VZ2_7G7_tKSFCtLwrE949TQj-PkNM_WyjhmlSDnyOPZNd3bR1x2RB3z5D73wOrvh7oGgnSzCkUO93lA4-xgDj_hpK-oeo-wv2ffMY9dcCv_n3_j36N1j-BzGAqHI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791970330</pqid></control><display><type>article</type><title>Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers via second-order symmetry-adapted perturbation theory</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Loipersberger, Matthias ; Malone, Fionn D ; Welden, Alicia R ; Parrish, Robert M ; Fox, Thomas ; Degroote, Matthias ; Kyoseva, Elica ; Moll, Nikolaj ; Santagati, Raffaele ; Streif, Michael</creator><creatorcontrib>Loipersberger, Matthias ; Malone, Fionn D ; Welden, Alicia R ; Parrish, Robert M ; Fox, Thomas ; Degroote, Matthias ; Kyoseva, Elica ; Moll, Nikolaj ; Santagati, Raffaele ; Streif, Michael</creatorcontrib><description>The calculation of non-covalent interaction energies on noisy intermediate-scale quantum (NISQ) computers appears to be challenging with straightforward application of existing quantum algorithms. For example, the use of the standard supermolecular method with the variational quantum eigensolver (VQE) would require extremely precise resolution of the total energies of the fragments to provide for accurate subtraction to the interaction energy. Here we present a symmetry-adapted perturbation theory (SAPT) method that may provide interaction energies with high quantum resource efficiency. Of particular note, we present a quantum extended random-phase approximation (ERPA) treatment of the SAPT second-order induction and dispersion terms, including exchange counterparts. Together with previous work on first-order terms ( , 2022, , 3094), this provides a recipe for complete SAPT(VQE) interaction energies up to second order, which is a well established truncation. The SAPT interaction energy terms are computed as first-level observables with no subtraction of monomer energies invoked, and the only quantum observations needed are the VQE one- and two-particle density matrices. We find empirically that SAPT(VQE) can provide accurate interaction energies even with coarsely optimized, low circuit depth wavefunctions from a quantum computer, simulated through ideal statevectors. The errors of the total interaction energy are orders of magnitude lower than the corresponding VQE total energy errors of the monomer wavefunctions. In addition, we present heme-nitrosyl model complexes as a system class for near term quantum computing simulations. They are strongly correlated, biologically relevant and difficult to simulate with classical quantum chemical methods. This is illustrated with density functional theory (DFT) as the predicted interaction energies exhibit a strong sensitivity with respect to the choice of functional. Thus, this work paves the way to obtain accurate interaction energies on a NISQ-era quantum computer with few quantum resources. It is the first step in alleviating one of the major challenges in quantum chemistry, where in-depth knowledge of both the method and system is required to reliably generate accurate interaction energies.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d2sc05896k</identifier><identifier>PMID: 37006701</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algorithms ; Charged particles ; Chemistry ; Circuits ; Density functional theory ; Errors ; Mathematical analysis ; Monomers ; Particle density (concentration) ; Perturbation theory ; Quantum chemistry ; Quantum computers ; Quantum computing ; Simulation ; Subtraction ; Symmetry ; Wave functions</subject><ispartof>Chemical science (Cambridge), 2023-03, Vol.14 (13), p.3587-3599</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-e240386d7b82413f2dbf51aa5ef834b33bd5c1ddd110e56596051bb8f867c2633</citedby><cites>FETCH-LOGICAL-c407t-e240386d7b82413f2dbf51aa5ef834b33bd5c1ddd110e56596051bb8f867c2633</cites><orcidid>0000-0002-1054-4701 ; 0000-0001-9645-0580 ; 0000-0002-7509-4748 ; 0000-0001-5645-4667 ; 0000-0002-2406-4741 ; 0000-0002-9154-0293 ; 0000-0002-3648-0101 ; 0000-0001-9239-0162 ; 0000-0002-2238-9825 ; 0000-0002-8850-7708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055839/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055839/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37006701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loipersberger, Matthias</creatorcontrib><creatorcontrib>Malone, Fionn D</creatorcontrib><creatorcontrib>Welden, Alicia R</creatorcontrib><creatorcontrib>Parrish, Robert M</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Degroote, Matthias</creatorcontrib><creatorcontrib>Kyoseva, Elica</creatorcontrib><creatorcontrib>Moll, Nikolaj</creatorcontrib><creatorcontrib>Santagati, Raffaele</creatorcontrib><creatorcontrib>Streif, Michael</creatorcontrib><title>Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers via second-order symmetry-adapted perturbation theory</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The calculation of non-covalent interaction energies on noisy intermediate-scale quantum (NISQ) computers appears to be challenging with straightforward application of existing quantum algorithms. For example, the use of the standard supermolecular method with the variational quantum eigensolver (VQE) would require extremely precise resolution of the total energies of the fragments to provide for accurate subtraction to the interaction energy. Here we present a symmetry-adapted perturbation theory (SAPT) method that may provide interaction energies with high quantum resource efficiency. Of particular note, we present a quantum extended random-phase approximation (ERPA) treatment of the SAPT second-order induction and dispersion terms, including exchange counterparts. Together with previous work on first-order terms ( , 2022, , 3094), this provides a recipe for complete SAPT(VQE) interaction energies up to second order, which is a well established truncation. The SAPT interaction energy terms are computed as first-level observables with no subtraction of monomer energies invoked, and the only quantum observations needed are the VQE one- and two-particle density matrices. We find empirically that SAPT(VQE) can provide accurate interaction energies even with coarsely optimized, low circuit depth wavefunctions from a quantum computer, simulated through ideal statevectors. The errors of the total interaction energy are orders of magnitude lower than the corresponding VQE total energy errors of the monomer wavefunctions. In addition, we present heme-nitrosyl model complexes as a system class for near term quantum computing simulations. They are strongly correlated, biologically relevant and difficult to simulate with classical quantum chemical methods. This is illustrated with density functional theory (DFT) as the predicted interaction energies exhibit a strong sensitivity with respect to the choice of functional. Thus, this work paves the way to obtain accurate interaction energies on a NISQ-era quantum computer with few quantum resources. It is the first step in alleviating one of the major challenges in quantum chemistry, where in-depth knowledge of both the method and system is required to reliably generate accurate interaction energies.</description><subject>Algorithms</subject><subject>Charged particles</subject><subject>Chemistry</subject><subject>Circuits</subject><subject>Density functional theory</subject><subject>Errors</subject><subject>Mathematical analysis</subject><subject>Monomers</subject><subject>Particle density (concentration)</subject><subject>Perturbation theory</subject><subject>Quantum chemistry</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Simulation</subject><subject>Subtraction</subject><subject>Symmetry</subject><subject>Wave functions</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1TAURS1ERau2Ez4AWWKCkEL9iONkhKpbaBGVGADjyLFPWpfETv24Un6Cb8btLVdQT3ykvc5jayP0mpIPlPDuzLCoiWi75tcLdMRITatG8O7lvmbkEJ3GeEfK45wKJl-hQy4JaSShR-j3udY5qATYeVdpv1UTuIStSxCUTtY7DA7CjYWIS-28jetOncHY0ldFXVrwfVYu5RlrPy-5qBFvrcIRtHem8sFAwHGdZ0hhrZRRSwKDFwgph0E9bkm34MN6gg5GNUU4ffqP0c_Pn35srqrrb5dfNufXla6JTBWwmvC2MXJoWU35yMwwCqqUgLHl9cD5YISmxhhKCYhGdA0RdBjasW2kZg3nx-jjbu6Sh2JEF89BTf0S7KzC2ntl-_8VZ2_7G7_tKSFCtLwrE949TQj-PkNM_WyjhmlSDnyOPZNd3bR1x2RB3z5D73wOrvh7oGgnSzCkUO93lA4-xgDj_hpK-oeo-wv2ffMY9dcCv_n3_j36N1j-BzGAqHI</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Loipersberger, Matthias</creator><creator>Malone, Fionn D</creator><creator>Welden, Alicia R</creator><creator>Parrish, Robert M</creator><creator>Fox, Thomas</creator><creator>Degroote, Matthias</creator><creator>Kyoseva, Elica</creator><creator>Moll, Nikolaj</creator><creator>Santagati, Raffaele</creator><creator>Streif, Michael</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1054-4701</orcidid><orcidid>https://orcid.org/0000-0001-9645-0580</orcidid><orcidid>https://orcid.org/0000-0002-7509-4748</orcidid><orcidid>https://orcid.org/0000-0001-5645-4667</orcidid><orcidid>https://orcid.org/0000-0002-2406-4741</orcidid><orcidid>https://orcid.org/0000-0002-9154-0293</orcidid><orcidid>https://orcid.org/0000-0002-3648-0101</orcidid><orcidid>https://orcid.org/0000-0001-9239-0162</orcidid><orcidid>https://orcid.org/0000-0002-2238-9825</orcidid><orcidid>https://orcid.org/0000-0002-8850-7708</orcidid></search><sort><creationdate>20230329</creationdate><title>Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers via second-order symmetry-adapted perturbation theory</title><author>Loipersberger, Matthias ; Malone, Fionn D ; Welden, Alicia R ; Parrish, Robert M ; Fox, Thomas ; Degroote, Matthias ; Kyoseva, Elica ; Moll, Nikolaj ; Santagati, Raffaele ; Streif, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-e240386d7b82413f2dbf51aa5ef834b33bd5c1ddd110e56596051bb8f867c2633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Charged particles</topic><topic>Chemistry</topic><topic>Circuits</topic><topic>Density functional theory</topic><topic>Errors</topic><topic>Mathematical analysis</topic><topic>Monomers</topic><topic>Particle density (concentration)</topic><topic>Perturbation theory</topic><topic>Quantum chemistry</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Simulation</topic><topic>Subtraction</topic><topic>Symmetry</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loipersberger, Matthias</creatorcontrib><creatorcontrib>Malone, Fionn D</creatorcontrib><creatorcontrib>Welden, Alicia R</creatorcontrib><creatorcontrib>Parrish, Robert M</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Degroote, Matthias</creatorcontrib><creatorcontrib>Kyoseva, Elica</creatorcontrib><creatorcontrib>Moll, Nikolaj</creatorcontrib><creatorcontrib>Santagati, Raffaele</creatorcontrib><creatorcontrib>Streif, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loipersberger, Matthias</au><au>Malone, Fionn D</au><au>Welden, Alicia R</au><au>Parrish, Robert M</au><au>Fox, Thomas</au><au>Degroote, Matthias</au><au>Kyoseva, Elica</au><au>Moll, Nikolaj</au><au>Santagati, Raffaele</au><au>Streif, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers via second-order symmetry-adapted perturbation theory</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2023-03-29</date><risdate>2023</risdate><volume>14</volume><issue>13</issue><spage>3587</spage><epage>3599</epage><pages>3587-3599</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The calculation of non-covalent interaction energies on noisy intermediate-scale quantum (NISQ) computers appears to be challenging with straightforward application of existing quantum algorithms. For example, the use of the standard supermolecular method with the variational quantum eigensolver (VQE) would require extremely precise resolution of the total energies of the fragments to provide for accurate subtraction to the interaction energy. Here we present a symmetry-adapted perturbation theory (SAPT) method that may provide interaction energies with high quantum resource efficiency. Of particular note, we present a quantum extended random-phase approximation (ERPA) treatment of the SAPT second-order induction and dispersion terms, including exchange counterparts. Together with previous work on first-order terms ( , 2022, , 3094), this provides a recipe for complete SAPT(VQE) interaction energies up to second order, which is a well established truncation. The SAPT interaction energy terms are computed as first-level observables with no subtraction of monomer energies invoked, and the only quantum observations needed are the VQE one- and two-particle density matrices. We find empirically that SAPT(VQE) can provide accurate interaction energies even with coarsely optimized, low circuit depth wavefunctions from a quantum computer, simulated through ideal statevectors. The errors of the total interaction energy are orders of magnitude lower than the corresponding VQE total energy errors of the monomer wavefunctions. In addition, we present heme-nitrosyl model complexes as a system class for near term quantum computing simulations. They are strongly correlated, biologically relevant and difficult to simulate with classical quantum chemical methods. This is illustrated with density functional theory (DFT) as the predicted interaction energies exhibit a strong sensitivity with respect to the choice of functional. Thus, this work paves the way to obtain accurate interaction energies on a NISQ-era quantum computer with few quantum resources. It is the first step in alleviating one of the major challenges in quantum chemistry, where in-depth knowledge of both the method and system is required to reliably generate accurate interaction energies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37006701</pmid><doi>10.1039/d2sc05896k</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1054-4701</orcidid><orcidid>https://orcid.org/0000-0001-9645-0580</orcidid><orcidid>https://orcid.org/0000-0002-7509-4748</orcidid><orcidid>https://orcid.org/0000-0001-5645-4667</orcidid><orcidid>https://orcid.org/0000-0002-2406-4741</orcidid><orcidid>https://orcid.org/0000-0002-9154-0293</orcidid><orcidid>https://orcid.org/0000-0002-3648-0101</orcidid><orcidid>https://orcid.org/0000-0001-9239-0162</orcidid><orcidid>https://orcid.org/0000-0002-2238-9825</orcidid><orcidid>https://orcid.org/0000-0002-8850-7708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2023-03, Vol.14 (13), p.3587-3599
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10055839
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Charged particles
Chemistry
Circuits
Density functional theory
Errors
Mathematical analysis
Monomers
Particle density (concentration)
Perturbation theory
Quantum chemistry
Quantum computers
Quantum computing
Simulation
Subtraction
Symmetry
Wave functions
title Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers via second-order symmetry-adapted perturbation theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20non-covalent%20interaction%20energies%20on%20noisy%20intermediate-scale%20quantum%20computers%20via%20second-order%20symmetry-adapted%20perturbation%20theory&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Loipersberger,%20Matthias&rft.date=2023-03-29&rft.volume=14&rft.issue=13&rft.spage=3587&rft.epage=3599&rft.pages=3587-3599&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d2sc05896k&rft_dat=%3Cproquest_pubme%3E2794684927%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791970330&rft_id=info:pmid/37006701&rfr_iscdi=true