High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes
The increasing demand for electrical energy storage makes it essential to explore alternative battery chemistries that overcome the energy-density limitations of the current state-of-the-art lithium-ion batteries. In this scenario, lithium–sulfur batteries (LSBs) stand out due to the low cost, high...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2023-03, Vol.6 (6), p.3579-3589 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3589 |
---|---|
container_issue | 6 |
container_start_page | 3579 |
container_title | ACS applied energy materials |
container_volume | 6 |
creator | Castillo, Julen Santiago, Alexander Judez, Xabier Coca-Clemente, Jose Antonio Saenz de Buruaga, Amaia Gómez-Urbano, Juan Luis González-Marcos, Jose Antonio Armand, Michel Li, Chunmei Carriazo, Daniel |
description | The increasing demand for electrical energy storage makes it essential to explore alternative battery chemistries that overcome the energy-density limitations of the current state-of-the-art lithium-ion batteries. In this scenario, lithium–sulfur batteries (LSBs) stand out due to the low cost, high theoretical capacity, and sustainability of sulfur. However, this battery technology presents several intrinsic limitations that need to be addressed in order to definitively achieve its commercialization. Herein, we report the fruitfulness of three different formulations using well-selected functional carbonaceous additives for sulfur cathode development, an in-house synthesized graphene-based porous carbon (ResFArGO), and a mixture of commercially available conductive carbons (CAs), as a facile and scalable strategy for the development of high-performing LSBs. The additives clearly improve the electrochemical properties of the sulfur electrodes due to an electronic conductivity enhancement, leading to an outstanding C-rate response with a remarkable capacity of 2 mA h cm–2 at 1C and superb capacities of 4.3, 4.0, and 3.6 mA h cm–2 at C/10 for ResFArGO10, ResFArGO5, and CAs, respectively. Moreover, in the case of ResFArGO, the presence of oxygen functional groups enables the development of compact high sulfur loading cathodes (>4 mgS cm–2) with a great ability to trap the soluble lithium polysulfides. Notably, the scalability of our system was further demonstrated by the assembly of prototype pouch cells delivering excellent capacities of 90 mA h (ResFArGO10 cell) and 70 mA h (ResFArGO5 and CAs cell) at C/10. |
doi_str_mv | 10.1021/acsaem.3c00177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10052352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794692872</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-4d7b9340b9679bad4ba9a63a28853f7c0e87d78f42184bcfb369ef0a9a6122793</originalsourceid><addsrcrecordid>eNp1kUFLwzAYhoMoOqZXj9KjCJ1JmjXNSeacThh4UM8hbb9ukbbRJFV28z_4D_0lpmyKHoRAPr487_sleRE6JnhEMCXnqnAKmlFSYEw430EDOuYsxiKlu7_qA3Tk3BMOjCApFWIfHSQcY8EoHaBqrperaNaCXa6jK2id9utoof1Kd83n-8d9V1edjS6V92A1uFA5KCPTRlNlc9OqAkznooc3E1_pppeHXh1NylJ7_QqB8itTgjtEe5WqHRxt9yF6vJ49TOfx4u7mdjpZxIrR1Mes5LlIGM5FykWuSpYrodJE0SwbJxUvMGS85FnFKMlYXlR5kgqocA8RSrlIhuhi4_vc5Q2UBbTeqlo-W90ou5ZGafn3pNUruTSvkmA8pklYQ3S6dbDmpQPnZaNdAXWt2v6pMkxhqaAZ79HRBi2scc5C9TOHYNkHJDcByW1AQXDy-3Y_-HccATjbAEEon0xnw2e6_9y-ACV_nXI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794692872</pqid></control><display><type>article</type><title>High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes</title><source>American Chemical Society Journals</source><creator>Castillo, Julen ; Santiago, Alexander ; Judez, Xabier ; Coca-Clemente, Jose Antonio ; Saenz de Buruaga, Amaia ; Gómez-Urbano, Juan Luis ; González-Marcos, Jose Antonio ; Armand, Michel ; Li, Chunmei ; Carriazo, Daniel</creator><creatorcontrib>Castillo, Julen ; Santiago, Alexander ; Judez, Xabier ; Coca-Clemente, Jose Antonio ; Saenz de Buruaga, Amaia ; Gómez-Urbano, Juan Luis ; González-Marcos, Jose Antonio ; Armand, Michel ; Li, Chunmei ; Carriazo, Daniel</creatorcontrib><description>The increasing demand for electrical energy storage makes it essential to explore alternative battery chemistries that overcome the energy-density limitations of the current state-of-the-art lithium-ion batteries. In this scenario, lithium–sulfur batteries (LSBs) stand out due to the low cost, high theoretical capacity, and sustainability of sulfur. However, this battery technology presents several intrinsic limitations that need to be addressed in order to definitively achieve its commercialization. Herein, we report the fruitfulness of three different formulations using well-selected functional carbonaceous additives for sulfur cathode development, an in-house synthesized graphene-based porous carbon (ResFArGO), and a mixture of commercially available conductive carbons (CAs), as a facile and scalable strategy for the development of high-performing LSBs. The additives clearly improve the electrochemical properties of the sulfur electrodes due to an electronic conductivity enhancement, leading to an outstanding C-rate response with a remarkable capacity of 2 mA h cm–2 at 1C and superb capacities of 4.3, 4.0, and 3.6 mA h cm–2 at C/10 for ResFArGO10, ResFArGO5, and CAs, respectively. Moreover, in the case of ResFArGO, the presence of oxygen functional groups enables the development of compact high sulfur loading cathodes (>4 mgS cm–2) with a great ability to trap the soluble lithium polysulfides. Notably, the scalability of our system was further demonstrated by the assembly of prototype pouch cells delivering excellent capacities of 90 mA h (ResFArGO10 cell) and 70 mA h (ResFArGO5 and CAs cell) at C/10.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.3c00177</identifier><identifier>PMID: 37009422</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied energy materials, 2023-03, Vol.6 (6), p.3579-3589</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society.</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-4d7b9340b9679bad4ba9a63a28853f7c0e87d78f42184bcfb369ef0a9a6122793</citedby><cites>FETCH-LOGICAL-a426t-4d7b9340b9679bad4ba9a63a28853f7c0e87d78f42184bcfb369ef0a9a6122793</cites><orcidid>0000-0003-4438-0458 ; 0000-0002-1303-9233 ; 0000-0003-1267-4224 ; 0000-0003-2382-2288 ; 0000-0002-3591-9792 ; 0000-0001-7629-8788 ; 0000-0002-5962-7938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.3c00177$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.3c00177$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37009422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castillo, Julen</creatorcontrib><creatorcontrib>Santiago, Alexander</creatorcontrib><creatorcontrib>Judez, Xabier</creatorcontrib><creatorcontrib>Coca-Clemente, Jose Antonio</creatorcontrib><creatorcontrib>Saenz de Buruaga, Amaia</creatorcontrib><creatorcontrib>Gómez-Urbano, Juan Luis</creatorcontrib><creatorcontrib>González-Marcos, Jose Antonio</creatorcontrib><creatorcontrib>Armand, Michel</creatorcontrib><creatorcontrib>Li, Chunmei</creatorcontrib><creatorcontrib>Carriazo, Daniel</creatorcontrib><title>High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The increasing demand for electrical energy storage makes it essential to explore alternative battery chemistries that overcome the energy-density limitations of the current state-of-the-art lithium-ion batteries. In this scenario, lithium–sulfur batteries (LSBs) stand out due to the low cost, high theoretical capacity, and sustainability of sulfur. However, this battery technology presents several intrinsic limitations that need to be addressed in order to definitively achieve its commercialization. Herein, we report the fruitfulness of three different formulations using well-selected functional carbonaceous additives for sulfur cathode development, an in-house synthesized graphene-based porous carbon (ResFArGO), and a mixture of commercially available conductive carbons (CAs), as a facile and scalable strategy for the development of high-performing LSBs. The additives clearly improve the electrochemical properties of the sulfur electrodes due to an electronic conductivity enhancement, leading to an outstanding C-rate response with a remarkable capacity of 2 mA h cm–2 at 1C and superb capacities of 4.3, 4.0, and 3.6 mA h cm–2 at C/10 for ResFArGO10, ResFArGO5, and CAs, respectively. Moreover, in the case of ResFArGO, the presence of oxygen functional groups enables the development of compact high sulfur loading cathodes (>4 mgS cm–2) with a great ability to trap the soluble lithium polysulfides. Notably, the scalability of our system was further demonstrated by the assembly of prototype pouch cells delivering excellent capacities of 90 mA h (ResFArGO10 cell) and 70 mA h (ResFArGO5 and CAs cell) at C/10.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUFLwzAYhoMoOqZXj9KjCJ1JmjXNSeacThh4UM8hbb9ukbbRJFV28z_4D_0lpmyKHoRAPr487_sleRE6JnhEMCXnqnAKmlFSYEw430EDOuYsxiKlu7_qA3Tk3BMOjCApFWIfHSQcY8EoHaBqrperaNaCXa6jK2id9utoof1Kd83n-8d9V1edjS6V92A1uFA5KCPTRlNlc9OqAkznooc3E1_pppeHXh1NylJ7_QqB8itTgjtEe5WqHRxt9yF6vJ49TOfx4u7mdjpZxIrR1Mes5LlIGM5FykWuSpYrodJE0SwbJxUvMGS85FnFKMlYXlR5kgqocA8RSrlIhuhi4_vc5Q2UBbTeqlo-W90ou5ZGafn3pNUruTSvkmA8pklYQ3S6dbDmpQPnZaNdAXWt2v6pMkxhqaAZ79HRBi2scc5C9TOHYNkHJDcByW1AQXDy-3Y_-HccATjbAEEon0xnw2e6_9y-ACV_nXI</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Castillo, Julen</creator><creator>Santiago, Alexander</creator><creator>Judez, Xabier</creator><creator>Coca-Clemente, Jose Antonio</creator><creator>Saenz de Buruaga, Amaia</creator><creator>Gómez-Urbano, Juan Luis</creator><creator>González-Marcos, Jose Antonio</creator><creator>Armand, Michel</creator><creator>Li, Chunmei</creator><creator>Carriazo, Daniel</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4438-0458</orcidid><orcidid>https://orcid.org/0000-0002-1303-9233</orcidid><orcidid>https://orcid.org/0000-0003-1267-4224</orcidid><orcidid>https://orcid.org/0000-0003-2382-2288</orcidid><orcidid>https://orcid.org/0000-0002-3591-9792</orcidid><orcidid>https://orcid.org/0000-0001-7629-8788</orcidid><orcidid>https://orcid.org/0000-0002-5962-7938</orcidid></search><sort><creationdate>20230327</creationdate><title>High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes</title><author>Castillo, Julen ; Santiago, Alexander ; Judez, Xabier ; Coca-Clemente, Jose Antonio ; Saenz de Buruaga, Amaia ; Gómez-Urbano, Juan Luis ; González-Marcos, Jose Antonio ; Armand, Michel ; Li, Chunmei ; Carriazo, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-4d7b9340b9679bad4ba9a63a28853f7c0e87d78f42184bcfb369ef0a9a6122793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, Julen</creatorcontrib><creatorcontrib>Santiago, Alexander</creatorcontrib><creatorcontrib>Judez, Xabier</creatorcontrib><creatorcontrib>Coca-Clemente, Jose Antonio</creatorcontrib><creatorcontrib>Saenz de Buruaga, Amaia</creatorcontrib><creatorcontrib>Gómez-Urbano, Juan Luis</creatorcontrib><creatorcontrib>González-Marcos, Jose Antonio</creatorcontrib><creatorcontrib>Armand, Michel</creatorcontrib><creatorcontrib>Li, Chunmei</creatorcontrib><creatorcontrib>Carriazo, Daniel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, Julen</au><au>Santiago, Alexander</au><au>Judez, Xabier</au><au>Coca-Clemente, Jose Antonio</au><au>Saenz de Buruaga, Amaia</au><au>Gómez-Urbano, Juan Luis</au><au>González-Marcos, Jose Antonio</au><au>Armand, Michel</au><au>Li, Chunmei</au><au>Carriazo, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2023-03-27</date><risdate>2023</risdate><volume>6</volume><issue>6</issue><spage>3579</spage><epage>3589</epage><pages>3579-3589</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The increasing demand for electrical energy storage makes it essential to explore alternative battery chemistries that overcome the energy-density limitations of the current state-of-the-art lithium-ion batteries. In this scenario, lithium–sulfur batteries (LSBs) stand out due to the low cost, high theoretical capacity, and sustainability of sulfur. However, this battery technology presents several intrinsic limitations that need to be addressed in order to definitively achieve its commercialization. Herein, we report the fruitfulness of three different formulations using well-selected functional carbonaceous additives for sulfur cathode development, an in-house synthesized graphene-based porous carbon (ResFArGO), and a mixture of commercially available conductive carbons (CAs), as a facile and scalable strategy for the development of high-performing LSBs. The additives clearly improve the electrochemical properties of the sulfur electrodes due to an electronic conductivity enhancement, leading to an outstanding C-rate response with a remarkable capacity of 2 mA h cm–2 at 1C and superb capacities of 4.3, 4.0, and 3.6 mA h cm–2 at C/10 for ResFArGO10, ResFArGO5, and CAs, respectively. Moreover, in the case of ResFArGO, the presence of oxygen functional groups enables the development of compact high sulfur loading cathodes (>4 mgS cm–2) with a great ability to trap the soluble lithium polysulfides. Notably, the scalability of our system was further demonstrated by the assembly of prototype pouch cells delivering excellent capacities of 90 mA h (ResFArGO10 cell) and 70 mA h (ResFArGO5 and CAs cell) at C/10.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37009422</pmid><doi>10.1021/acsaem.3c00177</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4438-0458</orcidid><orcidid>https://orcid.org/0000-0002-1303-9233</orcidid><orcidid>https://orcid.org/0000-0003-1267-4224</orcidid><orcidid>https://orcid.org/0000-0003-2382-2288</orcidid><orcidid>https://orcid.org/0000-0002-3591-9792</orcidid><orcidid>https://orcid.org/0000-0001-7629-8788</orcidid><orcidid>https://orcid.org/0000-0002-5962-7938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2023-03, Vol.6 (6), p.3579-3589 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10052352 |
source | American Chemical Society Journals |
title | High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Energy%20Density%20Lithium%E2%80%93Sulfur%20Batteries%20Based%20on%20Carbonaceous%20Two-Dimensional%20Additive%20Cathodes&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Castillo,%20Julen&rft.date=2023-03-27&rft.volume=6&rft.issue=6&rft.spage=3579&rft.epage=3589&rft.pages=3579-3589&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.3c00177&rft_dat=%3Cproquest_pubme%3E2794692872%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794692872&rft_id=info:pmid/37009422&rfr_iscdi=true |