Bismuth-Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage

Alloy-type anodes are the most promising candidates for sodium-ion batteries (SIBs) due to their impressive Na storage capacity and suitable voltage platform. However, the implementation of alloy-type anodes is significantly hindered by their huge volume expansion during the alloying/dealloying proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-03, Vol.16 (6), p.2189
Hauptverfasser: Ma, Wensheng, Yu, Bin, Tan, Fuquan, Gao, Hui, Zhang, Zhonghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 2189
container_title Materials
container_volume 16
creator Ma, Wensheng
Yu, Bin
Tan, Fuquan
Gao, Hui
Zhang, Zhonghua
description Alloy-type anodes are the most promising candidates for sodium-ion batteries (SIBs) due to their impressive Na storage capacity and suitable voltage platform. However, the implementation of alloy-type anodes is significantly hindered by their huge volume expansion during the alloying/dealloying processes, which leads to their pulverization and detachment from current collectors for active materials and the unsatisfactory cycling performance. In this work, bimetallic Bi-Sb solid solutions in a porous carbon matrix are synthesized by a pyrolysis method as anode material for SIBs. Adjustable alloy composition, the introduction of porous carbon matrix, and nanosized bimetallic particles effectively suppress the volume change during cycling and accelerate the electrons/ions transport kinetics. The optimized Bi Sb @C electrode exhibits an excellent electrochemical performance with an ultralong cycle life (167.2 mAh g at 1 A g over 8000 cycles). In situ X-ray diffraction investigation is conducted to reveal the reversible and synchronous sodium storage pathway of the Bi Sb @C electrode: (Bi,Sb) Na(Bi,Sb) Na (Bi,Sb). Furthermore, online electrochemical mass spectrometry unveils the evolution of gas products of the Bi Sb @C electrode during the cell operation.
doi_str_mv 10.3390/ma16062189
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10051522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743766632</galeid><sourcerecordid>A743766632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-2f2a8ea64f7848bfe30b8502518666c298cbd67f6873b86d1db84c67337fe0aa3</originalsourceid><addsrcrecordid>eNpdkVtvFCEAhSdGY5vaF3-AIfHFmEzlNlyezHbTVpMaTdY-ExhgS8NAhRnj_nvZbK1VeIDAx-GcnK57jeAZIRJ-mDRikGEk5LPuGEnJeiQpff5kf9Sd1noH2yAECSxfdkeESUEhk8fdt_NQp2W-7VdpDlNOO7CKMe_AxWSctc6CkMBaF5MT-KLnEn4Bnwu4iXPR_WbWJjqwyTYsE9jMueite9W98DpWd_qwnnQ3lxff15_6669Xn9er636klM099lgLpxn1XFBhvCPQiAHiAQnG2IilGI1l3DPBiRHMImsEHRknhHsHtSYn3ceD7v1iJmdHl5qlqO5LmHTZqayD-vcmhVu1zT8VgnBAA8ZN4d2DQsk_FldnNYU6uhh1cnmpCnOJBwgFHxr69j_0Li8ltXx7CjGOBs4bdXagtjo6FZLP7eOxTeumMObkfGjnK04JbxnJ3sH7w4Ox5FqL84_2EVT7dtXfdhv85mngR_RPl-Q3olaeTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791671577</pqid></control><display><type>article</type><title>Bismuth-Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Wensheng ; Yu, Bin ; Tan, Fuquan ; Gao, Hui ; Zhang, Zhonghua</creator><creatorcontrib>Ma, Wensheng ; Yu, Bin ; Tan, Fuquan ; Gao, Hui ; Zhang, Zhonghua</creatorcontrib><description>Alloy-type anodes are the most promising candidates for sodium-ion batteries (SIBs) due to their impressive Na storage capacity and suitable voltage platform. However, the implementation of alloy-type anodes is significantly hindered by their huge volume expansion during the alloying/dealloying processes, which leads to their pulverization and detachment from current collectors for active materials and the unsatisfactory cycling performance. In this work, bimetallic Bi-Sb solid solutions in a porous carbon matrix are synthesized by a pyrolysis method as anode material for SIBs. Adjustable alloy composition, the introduction of porous carbon matrix, and nanosized bimetallic particles effectively suppress the volume change during cycling and accelerate the electrons/ions transport kinetics. The optimized Bi Sb @C electrode exhibits an excellent electrochemical performance with an ultralong cycle life (167.2 mAh g at 1 A g over 8000 cycles). In situ X-ray diffraction investigation is conducted to reveal the reversible and synchronous sodium storage pathway of the Bi Sb @C electrode: (Bi,Sb) Na(Bi,Sb) Na (Bi,Sb). Furthermore, online electrochemical mass spectrometry unveils the evolution of gas products of the Bi Sb @C electrode during the cell operation.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16062189</identifier><identifier>PMID: 36984069</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Anodes ; Antimony ; Antimony base alloys ; Batteries ; Bimetals ; Bismuth ; Carbon ; Composite materials ; Computer storage devices ; Electrochemical analysis ; Electrode materials ; Electrodes ; Mass spectrometry ; Nanocomposites ; Nanoparticles ; Porous media ; Potassium ; Pyrolysis ; Scanning electron microscopy ; Sodium ; Sodium-ion batteries ; Solid solutions ; Specialty metals industry ; Storage capacity</subject><ispartof>Materials, 2023-03, Vol.16 (6), p.2189</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-2f2a8ea64f7848bfe30b8502518666c298cbd67f6873b86d1db84c67337fe0aa3</citedby><cites>FETCH-LOGICAL-c446t-2f2a8ea64f7848bfe30b8502518666c298cbd67f6873b86d1db84c67337fe0aa3</cites><orcidid>0000-0002-8352-9836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051522/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051522/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36984069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Wensheng</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Tan, Fuquan</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Zhang, Zhonghua</creatorcontrib><title>Bismuth-Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Alloy-type anodes are the most promising candidates for sodium-ion batteries (SIBs) due to their impressive Na storage capacity and suitable voltage platform. However, the implementation of alloy-type anodes is significantly hindered by their huge volume expansion during the alloying/dealloying processes, which leads to their pulverization and detachment from current collectors for active materials and the unsatisfactory cycling performance. In this work, bimetallic Bi-Sb solid solutions in a porous carbon matrix are synthesized by a pyrolysis method as anode material for SIBs. Adjustable alloy composition, the introduction of porous carbon matrix, and nanosized bimetallic particles effectively suppress the volume change during cycling and accelerate the electrons/ions transport kinetics. The optimized Bi Sb @C electrode exhibits an excellent electrochemical performance with an ultralong cycle life (167.2 mAh g at 1 A g over 8000 cycles). In situ X-ray diffraction investigation is conducted to reveal the reversible and synchronous sodium storage pathway of the Bi Sb @C electrode: (Bi,Sb) Na(Bi,Sb) Na (Bi,Sb). Furthermore, online electrochemical mass spectrometry unveils the evolution of gas products of the Bi Sb @C electrode during the cell operation.</description><subject>Alloys</subject><subject>Anodes</subject><subject>Antimony</subject><subject>Antimony base alloys</subject><subject>Batteries</subject><subject>Bimetals</subject><subject>Bismuth</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Computer storage devices</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Mass spectrometry</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Porous media</subject><subject>Potassium</subject><subject>Pyrolysis</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solid solutions</subject><subject>Specialty metals industry</subject><subject>Storage capacity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtvFCEAhSdGY5vaF3-AIfHFmEzlNlyezHbTVpMaTdY-ExhgS8NAhRnj_nvZbK1VeIDAx-GcnK57jeAZIRJ-mDRikGEk5LPuGEnJeiQpff5kf9Sd1noH2yAECSxfdkeESUEhk8fdt_NQp2W-7VdpDlNOO7CKMe_AxWSctc6CkMBaF5MT-KLnEn4Bnwu4iXPR_WbWJjqwyTYsE9jMueite9W98DpWd_qwnnQ3lxff15_6669Xn9er636klM099lgLpxn1XFBhvCPQiAHiAQnG2IilGI1l3DPBiRHMImsEHRknhHsHtSYn3ceD7v1iJmdHl5qlqO5LmHTZqayD-vcmhVu1zT8VgnBAA8ZN4d2DQsk_FldnNYU6uhh1cnmpCnOJBwgFHxr69j_0Li8ltXx7CjGOBs4bdXagtjo6FZLP7eOxTeumMObkfGjnK04JbxnJ3sH7w4Ox5FqL84_2EVT7dtXfdhv85mngR_RPl-Q3olaeTw</recordid><startdate>20230309</startdate><enddate>20230309</enddate><creator>Ma, Wensheng</creator><creator>Yu, Bin</creator><creator>Tan, Fuquan</creator><creator>Gao, Hui</creator><creator>Zhang, Zhonghua</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8352-9836</orcidid></search><sort><creationdate>20230309</creationdate><title>Bismuth-Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage</title><author>Ma, Wensheng ; Yu, Bin ; Tan, Fuquan ; Gao, Hui ; Zhang, Zhonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-2f2a8ea64f7848bfe30b8502518666c298cbd67f6873b86d1db84c67337fe0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Anodes</topic><topic>Antimony</topic><topic>Antimony base alloys</topic><topic>Batteries</topic><topic>Bimetals</topic><topic>Bismuth</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Computer storage devices</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Mass spectrometry</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Porous media</topic><topic>Potassium</topic><topic>Pyrolysis</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solid solutions</topic><topic>Specialty metals industry</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wensheng</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Tan, Fuquan</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Zhang, Zhonghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wensheng</au><au>Yu, Bin</au><au>Tan, Fuquan</au><au>Gao, Hui</au><au>Zhang, Zhonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth-Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-03-09</date><risdate>2023</risdate><volume>16</volume><issue>6</issue><spage>2189</spage><pages>2189-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Alloy-type anodes are the most promising candidates for sodium-ion batteries (SIBs) due to their impressive Na storage capacity and suitable voltage platform. However, the implementation of alloy-type anodes is significantly hindered by their huge volume expansion during the alloying/dealloying processes, which leads to their pulverization and detachment from current collectors for active materials and the unsatisfactory cycling performance. In this work, bimetallic Bi-Sb solid solutions in a porous carbon matrix are synthesized by a pyrolysis method as anode material for SIBs. Adjustable alloy composition, the introduction of porous carbon matrix, and nanosized bimetallic particles effectively suppress the volume change during cycling and accelerate the electrons/ions transport kinetics. The optimized Bi Sb @C electrode exhibits an excellent electrochemical performance with an ultralong cycle life (167.2 mAh g at 1 A g over 8000 cycles). In situ X-ray diffraction investigation is conducted to reveal the reversible and synchronous sodium storage pathway of the Bi Sb @C electrode: (Bi,Sb) Na(Bi,Sb) Na (Bi,Sb). Furthermore, online electrochemical mass spectrometry unveils the evolution of gas products of the Bi Sb @C electrode during the cell operation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36984069</pmid><doi>10.3390/ma16062189</doi><orcidid>https://orcid.org/0000-0002-8352-9836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-03, Vol.16 (6), p.2189
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10051522
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alloys
Anodes
Antimony
Antimony base alloys
Batteries
Bimetals
Bismuth
Carbon
Composite materials
Computer storage devices
Electrochemical analysis
Electrode materials
Electrodes
Mass spectrometry
Nanocomposites
Nanoparticles
Porous media
Potassium
Pyrolysis
Scanning electron microscopy
Sodium
Sodium-ion batteries
Solid solutions
Specialty metals industry
Storage capacity
title Bismuth-Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth-Antimony%20Alloy%20Embedded%20in%20Carbon%20Matrix%20for%20Ultra-Stable%20Sodium%20Storage&rft.jtitle=Materials&rft.au=Ma,%20Wensheng&rft.date=2023-03-09&rft.volume=16&rft.issue=6&rft.spage=2189&rft.pages=2189-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16062189&rft_dat=%3Cgale_pubme%3EA743766632%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791671577&rft_id=info:pmid/36984069&rft_galeid=A743766632&rfr_iscdi=true