Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules

Low specificity in current ultrasound modalities for thyroid cancer detection necessitates the development of new imaging modalities for optimal characterization of thyroid nodules. Herein, the quantitative biomarkers of a new high-definition microvessel imaging (HDMI) were evaluated for discriminat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2023-03, Vol.15 (6), p.1888
Hauptverfasser: Kurti, Melisa, Sabeti, Soroosh, Robinson, Kathryn A, Scalise, Lorenzo, Larson, Nicholas B, Fatemi, Mostafa, Alizad, Azra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1888
container_title Cancers
container_volume 15
creator Kurti, Melisa
Sabeti, Soroosh
Robinson, Kathryn A
Scalise, Lorenzo
Larson, Nicholas B
Fatemi, Mostafa
Alizad, Azra
description Low specificity in current ultrasound modalities for thyroid cancer detection necessitates the development of new imaging modalities for optimal characterization of thyroid nodules. Herein, the quantitative biomarkers of a new high-definition microvessel imaging (HDMI) were evaluated for discrimination of benign from malignant thyroid nodules. Without the help of contrast agents, this new ultrasound-based quantitative technique utilizes processing methods including clutter filtering, denoising, vessel enhancement filtering, morphological filtering, and vessel segmentation to resolve tumor microvessels at size scales of a few hundred microns and enables the extraction of vessel morphological features as new tumor biomarkers. We evaluated quantitative HDMI on 92 patients with 92 thyroid nodules identified in ultrasound. A total of 12 biomarkers derived from vessel morphological parameters were associated with pathology results. Using the Wilcoxon rank-sum test, six of the twelve biomarkers were significantly different in distribution between the malignant and benign nodules (all < 0.01). A support vector machine (SVM)-based classification model was trained on these six biomarkers, and the receiver operating characteristic curve (ROC) showed an area under the curve (AUC) of 0.9005 (95% CI: [0.8279,0.9732]) with sensitivity, specificity, and accuracy of 0.7778, 0.9474, and 0.8929, respectively. When additional clinical data, namely TI-RADS, age, and nodule size were added to the features, model performance reached an AUC of 0.9044 (95% CI: [0.8331,0.9757]) with sensitivity, specificity, and accuracy of 0.8750, 0.8235, and 0.8400, respectively. Our findings suggest that tumor vessel morphological features may improve the characterization of thyroid nodules.
doi_str_mv 10.3390/cancers15061888
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10046818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743761315</galeid><sourcerecordid>A743761315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-1287b88df86d7aa011420fde4f9abbb609178ce5cc90c3a6e271a53763986c083</originalsourceid><addsrcrecordid>eNptUk1PHSEUJU1NNeq6u4akm25GYZjhY9XY97Sa2DZNdE0Y5s487AxYmHmJ_6E_uky1Vk1hweVyzoFzuQi9peSIMUWOrfEWYqI14VRK-QrtlUSUBeeqev0k3kWHKd2QPBijgos3aJdxJYkQ1R769X02fnKTmdwW8CcXRhN_ZFG8hpgzLe5iGLHBX8MWBrwKfoomTcVZBMDXw7IJs2_xues3xRo6593kgsdfnI2ZkVImXYymd77HXYh47dKU49mlzZK62tzF4Nqs3s4DpAO005khweHDuo-uz06vVufF5bfPF6uTy8JWUk0FLaVopGw7yVthDKG0KknXQtUp0zQNJ4oKaaG2VhHLDIdSUFMzwZmS3BLJ9tHHe93buRmhtbC4GvRtdNn9nQ7G6ecn3m10H7aaElJxSReFDw8KMfycIU16dMnCMBgPYU66FKqs_xQ8Q9-_gN6EOfrsb0HRWglZsX-o3gygne9CvtguovpEVPntlNE6o47-g8qzhdHZ4PMH5PwzwvE9IX9HShG6R5OU6KWJ9Ismyox3T2vziP_bMuw3QgXFZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791597843</pqid></control><display><type>article</type><title>Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kurti, Melisa ; Sabeti, Soroosh ; Robinson, Kathryn A ; Scalise, Lorenzo ; Larson, Nicholas B ; Fatemi, Mostafa ; Alizad, Azra</creator><creatorcontrib>Kurti, Melisa ; Sabeti, Soroosh ; Robinson, Kathryn A ; Scalise, Lorenzo ; Larson, Nicholas B ; Fatemi, Mostafa ; Alizad, Azra</creatorcontrib><description>Low specificity in current ultrasound modalities for thyroid cancer detection necessitates the development of new imaging modalities for optimal characterization of thyroid nodules. Herein, the quantitative biomarkers of a new high-definition microvessel imaging (HDMI) were evaluated for discrimination of benign from malignant thyroid nodules. Without the help of contrast agents, this new ultrasound-based quantitative technique utilizes processing methods including clutter filtering, denoising, vessel enhancement filtering, morphological filtering, and vessel segmentation to resolve tumor microvessels at size scales of a few hundred microns and enables the extraction of vessel morphological features as new tumor biomarkers. We evaluated quantitative HDMI on 92 patients with 92 thyroid nodules identified in ultrasound. A total of 12 biomarkers derived from vessel morphological parameters were associated with pathology results. Using the Wilcoxon rank-sum test, six of the twelve biomarkers were significantly different in distribution between the malignant and benign nodules (all &lt; 0.01). A support vector machine (SVM)-based classification model was trained on these six biomarkers, and the receiver operating characteristic curve (ROC) showed an area under the curve (AUC) of 0.9005 (95% CI: [0.8279,0.9732]) with sensitivity, specificity, and accuracy of 0.7778, 0.9474, and 0.8929, respectively. When additional clinical data, namely TI-RADS, age, and nodule size were added to the features, model performance reached an AUC of 0.9044 (95% CI: [0.8331,0.9757]) with sensitivity, specificity, and accuracy of 0.8750, 0.8235, and 0.8400, respectively. Our findings suggest that tumor vessel morphological features may improve the characterization of thyroid nodules.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15061888</identifier><identifier>PMID: 36980774</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Biological markers ; Biomarkers ; Biopsy ; Blood vessels ; Contrast media ; Diagnosis ; Diagnostic imaging ; Fractals ; Health aspects ; Malignancy ; Methods ; Microvasculature ; Morphology ; Nodules ; Patients ; Performance evaluation ; Segmentation ; Thyroid cancer ; Tumors ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Cancers, 2023-03, Vol.15 (6), p.1888</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-1287b88df86d7aa011420fde4f9abbb609178ce5cc90c3a6e271a53763986c083</citedby><cites>FETCH-LOGICAL-c489t-1287b88df86d7aa011420fde4f9abbb609178ce5cc90c3a6e271a53763986c083</cites><orcidid>0000-0002-6603-9077 ; 0000-0002-4728-3736 ; 0000-0002-7658-1572 ; 0000-0002-3468-4215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046818/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046818/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36980774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurti, Melisa</creatorcontrib><creatorcontrib>Sabeti, Soroosh</creatorcontrib><creatorcontrib>Robinson, Kathryn A</creatorcontrib><creatorcontrib>Scalise, Lorenzo</creatorcontrib><creatorcontrib>Larson, Nicholas B</creatorcontrib><creatorcontrib>Fatemi, Mostafa</creatorcontrib><creatorcontrib>Alizad, Azra</creatorcontrib><title>Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Low specificity in current ultrasound modalities for thyroid cancer detection necessitates the development of new imaging modalities for optimal characterization of thyroid nodules. Herein, the quantitative biomarkers of a new high-definition microvessel imaging (HDMI) were evaluated for discrimination of benign from malignant thyroid nodules. Without the help of contrast agents, this new ultrasound-based quantitative technique utilizes processing methods including clutter filtering, denoising, vessel enhancement filtering, morphological filtering, and vessel segmentation to resolve tumor microvessels at size scales of a few hundred microns and enables the extraction of vessel morphological features as new tumor biomarkers. We evaluated quantitative HDMI on 92 patients with 92 thyroid nodules identified in ultrasound. A total of 12 biomarkers derived from vessel morphological parameters were associated with pathology results. Using the Wilcoxon rank-sum test, six of the twelve biomarkers were significantly different in distribution between the malignant and benign nodules (all &lt; 0.01). A support vector machine (SVM)-based classification model was trained on these six biomarkers, and the receiver operating characteristic curve (ROC) showed an area under the curve (AUC) of 0.9005 (95% CI: [0.8279,0.9732]) with sensitivity, specificity, and accuracy of 0.7778, 0.9474, and 0.8929, respectively. When additional clinical data, namely TI-RADS, age, and nodule size were added to the features, model performance reached an AUC of 0.9044 (95% CI: [0.8331,0.9757]) with sensitivity, specificity, and accuracy of 0.8750, 0.8235, and 0.8400, respectively. Our findings suggest that tumor vessel morphological features may improve the characterization of thyroid nodules.</description><subject>Angiogenesis</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Blood vessels</subject><subject>Contrast media</subject><subject>Diagnosis</subject><subject>Diagnostic imaging</subject><subject>Fractals</subject><subject>Health aspects</subject><subject>Malignancy</subject><subject>Methods</subject><subject>Microvasculature</subject><subject>Morphology</subject><subject>Nodules</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Segmentation</subject><subject>Thyroid cancer</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptUk1PHSEUJU1NNeq6u4akm25GYZjhY9XY97Sa2DZNdE0Y5s487AxYmHmJ_6E_uky1Vk1hweVyzoFzuQi9peSIMUWOrfEWYqI14VRK-QrtlUSUBeeqev0k3kWHKd2QPBijgos3aJdxJYkQ1R769X02fnKTmdwW8CcXRhN_ZFG8hpgzLe5iGLHBX8MWBrwKfoomTcVZBMDXw7IJs2_xues3xRo6593kgsdfnI2ZkVImXYymd77HXYh47dKU49mlzZK62tzF4Nqs3s4DpAO005khweHDuo-uz06vVufF5bfPF6uTy8JWUk0FLaVopGw7yVthDKG0KknXQtUp0zQNJ4oKaaG2VhHLDIdSUFMzwZmS3BLJ9tHHe93buRmhtbC4GvRtdNn9nQ7G6ecn3m10H7aaElJxSReFDw8KMfycIU16dMnCMBgPYU66FKqs_xQ8Q9-_gN6EOfrsb0HRWglZsX-o3gygne9CvtguovpEVPntlNE6o47-g8qzhdHZ4PMH5PwzwvE9IX9HShG6R5OU6KWJ9Ismyox3T2vziP_bMuw3QgXFZw</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Kurti, Melisa</creator><creator>Sabeti, Soroosh</creator><creator>Robinson, Kathryn A</creator><creator>Scalise, Lorenzo</creator><creator>Larson, Nicholas B</creator><creator>Fatemi, Mostafa</creator><creator>Alizad, Azra</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6603-9077</orcidid><orcidid>https://orcid.org/0000-0002-4728-3736</orcidid><orcidid>https://orcid.org/0000-0002-7658-1572</orcidid><orcidid>https://orcid.org/0000-0002-3468-4215</orcidid></search><sort><creationdate>20230321</creationdate><title>Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules</title><author>Kurti, Melisa ; Sabeti, Soroosh ; Robinson, Kathryn A ; Scalise, Lorenzo ; Larson, Nicholas B ; Fatemi, Mostafa ; Alizad, Azra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-1287b88df86d7aa011420fde4f9abbb609178ce5cc90c3a6e271a53763986c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Blood vessels</topic><topic>Contrast media</topic><topic>Diagnosis</topic><topic>Diagnostic imaging</topic><topic>Fractals</topic><topic>Health aspects</topic><topic>Malignancy</topic><topic>Methods</topic><topic>Microvasculature</topic><topic>Morphology</topic><topic>Nodules</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Segmentation</topic><topic>Thyroid cancer</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurti, Melisa</creatorcontrib><creatorcontrib>Sabeti, Soroosh</creatorcontrib><creatorcontrib>Robinson, Kathryn A</creatorcontrib><creatorcontrib>Scalise, Lorenzo</creatorcontrib><creatorcontrib>Larson, Nicholas B</creatorcontrib><creatorcontrib>Fatemi, Mostafa</creatorcontrib><creatorcontrib>Alizad, Azra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurti, Melisa</au><au>Sabeti, Soroosh</au><au>Robinson, Kathryn A</au><au>Scalise, Lorenzo</au><au>Larson, Nicholas B</au><au>Fatemi, Mostafa</au><au>Alizad, Azra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-03-21</date><risdate>2023</risdate><volume>15</volume><issue>6</issue><spage>1888</spage><pages>1888-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Low specificity in current ultrasound modalities for thyroid cancer detection necessitates the development of new imaging modalities for optimal characterization of thyroid nodules. Herein, the quantitative biomarkers of a new high-definition microvessel imaging (HDMI) were evaluated for discrimination of benign from malignant thyroid nodules. Without the help of contrast agents, this new ultrasound-based quantitative technique utilizes processing methods including clutter filtering, denoising, vessel enhancement filtering, morphological filtering, and vessel segmentation to resolve tumor microvessels at size scales of a few hundred microns and enables the extraction of vessel morphological features as new tumor biomarkers. We evaluated quantitative HDMI on 92 patients with 92 thyroid nodules identified in ultrasound. A total of 12 biomarkers derived from vessel morphological parameters were associated with pathology results. Using the Wilcoxon rank-sum test, six of the twelve biomarkers were significantly different in distribution between the malignant and benign nodules (all &lt; 0.01). A support vector machine (SVM)-based classification model was trained on these six biomarkers, and the receiver operating characteristic curve (ROC) showed an area under the curve (AUC) of 0.9005 (95% CI: [0.8279,0.9732]) with sensitivity, specificity, and accuracy of 0.7778, 0.9474, and 0.8929, respectively. When additional clinical data, namely TI-RADS, age, and nodule size were added to the features, model performance reached an AUC of 0.9044 (95% CI: [0.8331,0.9757]) with sensitivity, specificity, and accuracy of 0.8750, 0.8235, and 0.8400, respectively. Our findings suggest that tumor vessel morphological features may improve the characterization of thyroid nodules.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36980774</pmid><doi>10.3390/cancers15061888</doi><orcidid>https://orcid.org/0000-0002-6603-9077</orcidid><orcidid>https://orcid.org/0000-0002-4728-3736</orcidid><orcidid>https://orcid.org/0000-0002-7658-1572</orcidid><orcidid>https://orcid.org/0000-0002-3468-4215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2023-03, Vol.15 (6), p.1888
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10046818
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Angiogenesis
Biological markers
Biomarkers
Biopsy
Blood vessels
Contrast media
Diagnosis
Diagnostic imaging
Fractals
Health aspects
Malignancy
Methods
Microvasculature
Morphology
Nodules
Patients
Performance evaluation
Segmentation
Thyroid cancer
Tumors
Ultrasonic imaging
Ultrasound
title Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Biomarkers%20Derived%20from%20a%20Novel%20Contrast-Free%20Ultrasound%20High-Definition%20Microvessel%20Imaging%20for%20Distinguishing%20Thyroid%20Nodules&rft.jtitle=Cancers&rft.au=Kurti,%20Melisa&rft.date=2023-03-21&rft.volume=15&rft.issue=6&rft.spage=1888&rft.pages=1888-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15061888&rft_dat=%3Cgale_pubme%3EA743761315%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791597843&rft_id=info:pmid/36980774&rft_galeid=A743761315&rfr_iscdi=true