Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter

Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-03, Vol.120 (12), p.e2202074120-e2202074120
Hauptverfasser: Wadekar, Digvijay, Thiele, Leander, Villaescusa-Navarro, Francisco, Hill, J Colin, Cranmer, Miles, Spergel, David N, Battaglia, Nicholas, Anglés-Alcázar, Daniel, Hernquist, Lars, Ho, Shirley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2202074120
container_issue 12
container_start_page e2202074120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Wadekar, Digvijay
Thiele, Leander
Villaescusa-Navarro, Francisco
Hill, J Colin
Cranmer, Miles
Spergel, David N
Battaglia, Nicholas
Anglés-Alcázar, Daniel
Hernquist, Lars
Ho, Shirley
description Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation ( - ), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines and concentration of ionized gas ( ): ∝ ≡ (1 - ). reduces the scatter in the predicted by ∼20 - 30% for large clusters ( ≳ 10 ), as compared to using just . We show that the dependence on is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test on clusters from CAMELS simulations and show that is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4.
doi_str_mv 10.1073/pnas.2202074120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10041100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791345676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-236c6e7e9020ba0bcd19459907a4e95470e2229f20dcebc27796c9ffd08d131a3</originalsourceid><addsrcrecordid>eNpdkc1vFSEUxYnR2Nfq2p0hceNm2gvDDIMb89JYNWniQt24ITyGeUPDwAjMq2_pfy6T1vqxuSTc3zlwchB6QeCcAK8vZq_SOaVAgTNC4RHaEBCkapmAx2gDQHnVMcpO0GlKNwAgmg6eopO6FTW0QDfo53bZT8Zn6_dYpRzDPB6T1crhVMZ6G41T2Qaf8K3NI56UHq032BkVfdm_wdt5dkWxMjiHwveLXoV5NPjz4o_KHKpvxvXhYPWIB7f8qCaV0vpAziY-Q08G5ZJ5fn-eoa9X775cfqiuP73_eLm9rjSjNFe0bnVruBEl607BTvdEsEYI4IoZ0TAOhlIqBgq9NjtNORetFsPQQ9eTmqj6DL29852X3WQK5HNUTs7RTioeZVBW_rvxdpT7cJAEgJEyisPre4cYvi8mZTnZpI1zypuwJEl513HBG0oK-uo_9CYs0Zd8hRKkZk3L20Jd3FE6hpSiGR5-Q0Cu_cq1X_mn36J4-XeIB_53ofUvbfqksg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791345676</pqid></control><display><type>article</type><title>Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wadekar, Digvijay ; Thiele, Leander ; Villaescusa-Navarro, Francisco ; Hill, J Colin ; Cranmer, Miles ; Spergel, David N ; Battaglia, Nicholas ; Anglés-Alcázar, Daniel ; Hernquist, Lars ; Ho, Shirley</creator><creatorcontrib>Wadekar, Digvijay ; Thiele, Leander ; Villaescusa-Navarro, Francisco ; Hill, J Colin ; Cranmer, Miles ; Spergel, David N ; Battaglia, Nicholas ; Anglés-Alcázar, Daniel ; Hernquist, Lars ; Ho, Shirley</creatorcontrib><description>Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation ( - ), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines and concentration of ionized gas ( ): ∝ ≡ (1 - ). reduces the scatter in the predicted by ∼20 - 30% for large clusters ( ≳ 10 ), as compared to using just . We show that the dependence on is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test on clusters from CAMELS simulations and show that is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2202074120</identifier><identifier>PMID: 36930602</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Clusters ; Estimation ; Learning algorithms ; Luminosity ; Machine learning ; Parameters ; Physical Sciences ; Physics ; Regression analysis ; Scaling ; Scattering ; Sunyaev-Zeldovich effect ; Yttria-stabilized zirconia</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-03, Vol.120 (12), p.e2202074120-e2202074120</ispartof><rights>Copyright National Academy of Sciences Mar 21, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-236c6e7e9020ba0bcd19459907a4e95470e2229f20dcebc27796c9ffd08d131a3</citedby><cites>FETCH-LOGICAL-c422t-236c6e7e9020ba0bcd19459907a4e95470e2229f20dcebc27796c9ffd08d131a3</cites><orcidid>0000-0002-4816-0455 ; 0000-0002-9539-0835 ; 0000-0002-2544-7533 ; 0000-0002-6458-3423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36930602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wadekar, Digvijay</creatorcontrib><creatorcontrib>Thiele, Leander</creatorcontrib><creatorcontrib>Villaescusa-Navarro, Francisco</creatorcontrib><creatorcontrib>Hill, J Colin</creatorcontrib><creatorcontrib>Cranmer, Miles</creatorcontrib><creatorcontrib>Spergel, David N</creatorcontrib><creatorcontrib>Battaglia, Nicholas</creatorcontrib><creatorcontrib>Anglés-Alcázar, Daniel</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><creatorcontrib>Ho, Shirley</creatorcontrib><title>Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation ( - ), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines and concentration of ionized gas ( ): ∝ ≡ (1 - ). reduces the scatter in the predicted by ∼20 - 30% for large clusters ( ≳ 10 ), as compared to using just . We show that the dependence on is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test on clusters from CAMELS simulations and show that is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4.</description><subject>Clusters</subject><subject>Estimation</subject><subject>Learning algorithms</subject><subject>Luminosity</subject><subject>Machine learning</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Regression analysis</subject><subject>Scaling</subject><subject>Scattering</subject><subject>Sunyaev-Zeldovich effect</subject><subject>Yttria-stabilized zirconia</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFSEUxYnR2Nfq2p0hceNm2gvDDIMb89JYNWniQt24ITyGeUPDwAjMq2_pfy6T1vqxuSTc3zlwchB6QeCcAK8vZq_SOaVAgTNC4RHaEBCkapmAx2gDQHnVMcpO0GlKNwAgmg6eopO6FTW0QDfo53bZT8Zn6_dYpRzDPB6T1crhVMZ6G41T2Qaf8K3NI56UHq032BkVfdm_wdt5dkWxMjiHwveLXoV5NPjz4o_KHKpvxvXhYPWIB7f8qCaV0vpAziY-Q08G5ZJ5fn-eoa9X775cfqiuP73_eLm9rjSjNFe0bnVruBEl607BTvdEsEYI4IoZ0TAOhlIqBgq9NjtNORetFsPQQ9eTmqj6DL29852X3WQK5HNUTs7RTioeZVBW_rvxdpT7cJAEgJEyisPre4cYvi8mZTnZpI1zypuwJEl513HBG0oK-uo_9CYs0Zd8hRKkZk3L20Jd3FE6hpSiGR5-Q0Cu_cq1X_mn36J4-XeIB_53ofUvbfqksg</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Wadekar, Digvijay</creator><creator>Thiele, Leander</creator><creator>Villaescusa-Navarro, Francisco</creator><creator>Hill, J Colin</creator><creator>Cranmer, Miles</creator><creator>Spergel, David N</creator><creator>Battaglia, Nicholas</creator><creator>Anglés-Alcázar, Daniel</creator><creator>Hernquist, Lars</creator><creator>Ho, Shirley</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4816-0455</orcidid><orcidid>https://orcid.org/0000-0002-9539-0835</orcidid><orcidid>https://orcid.org/0000-0002-2544-7533</orcidid><orcidid>https://orcid.org/0000-0002-6458-3423</orcidid></search><sort><creationdate>20230321</creationdate><title>Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter</title><author>Wadekar, Digvijay ; Thiele, Leander ; Villaescusa-Navarro, Francisco ; Hill, J Colin ; Cranmer, Miles ; Spergel, David N ; Battaglia, Nicholas ; Anglés-Alcázar, Daniel ; Hernquist, Lars ; Ho, Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-236c6e7e9020ba0bcd19459907a4e95470e2229f20dcebc27796c9ffd08d131a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clusters</topic><topic>Estimation</topic><topic>Learning algorithms</topic><topic>Luminosity</topic><topic>Machine learning</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Regression analysis</topic><topic>Scaling</topic><topic>Scattering</topic><topic>Sunyaev-Zeldovich effect</topic><topic>Yttria-stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wadekar, Digvijay</creatorcontrib><creatorcontrib>Thiele, Leander</creatorcontrib><creatorcontrib>Villaescusa-Navarro, Francisco</creatorcontrib><creatorcontrib>Hill, J Colin</creatorcontrib><creatorcontrib>Cranmer, Miles</creatorcontrib><creatorcontrib>Spergel, David N</creatorcontrib><creatorcontrib>Battaglia, Nicholas</creatorcontrib><creatorcontrib>Anglés-Alcázar, Daniel</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><creatorcontrib>Ho, Shirley</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wadekar, Digvijay</au><au>Thiele, Leander</au><au>Villaescusa-Navarro, Francisco</au><au>Hill, J Colin</au><au>Cranmer, Miles</au><au>Spergel, David N</au><au>Battaglia, Nicholas</au><au>Anglés-Alcázar, Daniel</au><au>Hernquist, Lars</au><au>Ho, Shirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-03-21</date><risdate>2023</risdate><volume>120</volume><issue>12</issue><spage>e2202074120</spage><epage>e2202074120</epage><pages>e2202074120-e2202074120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation ( - ), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines and concentration of ionized gas ( ): ∝ ≡ (1 - ). reduces the scatter in the predicted by ∼20 - 30% for large clusters ( ≳ 10 ), as compared to using just . We show that the dependence on is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test on clusters from CAMELS simulations and show that is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36930602</pmid><doi>10.1073/pnas.2202074120</doi><orcidid>https://orcid.org/0000-0002-4816-0455</orcidid><orcidid>https://orcid.org/0000-0002-9539-0835</orcidid><orcidid>https://orcid.org/0000-0002-2544-7533</orcidid><orcidid>https://orcid.org/0000-0002-6458-3423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-03, Vol.120 (12), p.e2202074120-e2202074120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10041100
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Clusters
Estimation
Learning algorithms
Luminosity
Machine learning
Parameters
Physical Sciences
Physics
Regression analysis
Scaling
Scattering
Sunyaev-Zeldovich effect
Yttria-stabilized zirconia
title Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmenting%20astrophysical%20scaling%20relations%20with%20machine%20learning:%20Application%20to%20reducing%20the%20Sunyaev-Zeldovich%20flux-mass%20scatter&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wadekar,%20Digvijay&rft.date=2023-03-21&rft.volume=120&rft.issue=12&rft.spage=e2202074120&rft.epage=e2202074120&rft.pages=e2202074120-e2202074120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2202074120&rft_dat=%3Cproquest_pubme%3E2791345676%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791345676&rft_id=info:pmid/36930602&rfr_iscdi=true