Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter
Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine lea...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-03, Vol.120 (12), p.e2202074120-e2202074120 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2202074120 |
---|---|
container_issue | 12 |
container_start_page | e2202074120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Wadekar, Digvijay Thiele, Leander Villaescusa-Navarro, Francisco Hill, J Colin Cranmer, Miles Spergel, David N Battaglia, Nicholas Anglés-Alcázar, Daniel Hernquist, Lars Ho, Shirley |
description | Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation (
-
), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines
and concentration of ionized gas (
):
∝
≡
(1 -
).
reduces the scatter in the predicted
by ∼20 - 30% for large clusters (
≳ 10
), as compared to using just
. We show that the dependence on
is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test
on clusters from CAMELS simulations and show that
is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4. |
doi_str_mv | 10.1073/pnas.2202074120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10041100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791345676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-236c6e7e9020ba0bcd19459907a4e95470e2229f20dcebc27796c9ffd08d131a3</originalsourceid><addsrcrecordid>eNpdkc1vFSEUxYnR2Nfq2p0hceNm2gvDDIMb89JYNWniQt24ITyGeUPDwAjMq2_pfy6T1vqxuSTc3zlwchB6QeCcAK8vZq_SOaVAgTNC4RHaEBCkapmAx2gDQHnVMcpO0GlKNwAgmg6eopO6FTW0QDfo53bZT8Zn6_dYpRzDPB6T1crhVMZ6G41T2Qaf8K3NI56UHq032BkVfdm_wdt5dkWxMjiHwveLXoV5NPjz4o_KHKpvxvXhYPWIB7f8qCaV0vpAziY-Q08G5ZJ5fn-eoa9X775cfqiuP73_eLm9rjSjNFe0bnVruBEl607BTvdEsEYI4IoZ0TAOhlIqBgq9NjtNORetFsPQQ9eTmqj6DL29852X3WQK5HNUTs7RTioeZVBW_rvxdpT7cJAEgJEyisPre4cYvi8mZTnZpI1zypuwJEl513HBG0oK-uo_9CYs0Zd8hRKkZk3L20Jd3FE6hpSiGR5-Q0Cu_cq1X_mn36J4-XeIB_53ofUvbfqksg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791345676</pqid></control><display><type>article</type><title>Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wadekar, Digvijay ; Thiele, Leander ; Villaescusa-Navarro, Francisco ; Hill, J Colin ; Cranmer, Miles ; Spergel, David N ; Battaglia, Nicholas ; Anglés-Alcázar, Daniel ; Hernquist, Lars ; Ho, Shirley</creator><creatorcontrib>Wadekar, Digvijay ; Thiele, Leander ; Villaescusa-Navarro, Francisco ; Hill, J Colin ; Cranmer, Miles ; Spergel, David N ; Battaglia, Nicholas ; Anglés-Alcázar, Daniel ; Hernquist, Lars ; Ho, Shirley</creatorcontrib><description>Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation (
-
), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines
and concentration of ionized gas (
):
∝
≡
(1 -
).
reduces the scatter in the predicted
by ∼20 - 30% for large clusters (
≳ 10
), as compared to using just
. We show that the dependence on
is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test
on clusters from CAMELS simulations and show that
is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2202074120</identifier><identifier>PMID: 36930602</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Clusters ; Estimation ; Learning algorithms ; Luminosity ; Machine learning ; Parameters ; Physical Sciences ; Physics ; Regression analysis ; Scaling ; Scattering ; Sunyaev-Zeldovich effect ; Yttria-stabilized zirconia</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-03, Vol.120 (12), p.e2202074120-e2202074120</ispartof><rights>Copyright National Academy of Sciences Mar 21, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-236c6e7e9020ba0bcd19459907a4e95470e2229f20dcebc27796c9ffd08d131a3</citedby><cites>FETCH-LOGICAL-c422t-236c6e7e9020ba0bcd19459907a4e95470e2229f20dcebc27796c9ffd08d131a3</cites><orcidid>0000-0002-4816-0455 ; 0000-0002-9539-0835 ; 0000-0002-2544-7533 ; 0000-0002-6458-3423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36930602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wadekar, Digvijay</creatorcontrib><creatorcontrib>Thiele, Leander</creatorcontrib><creatorcontrib>Villaescusa-Navarro, Francisco</creatorcontrib><creatorcontrib>Hill, J Colin</creatorcontrib><creatorcontrib>Cranmer, Miles</creatorcontrib><creatorcontrib>Spergel, David N</creatorcontrib><creatorcontrib>Battaglia, Nicholas</creatorcontrib><creatorcontrib>Anglés-Alcázar, Daniel</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><creatorcontrib>Ho, Shirley</creatorcontrib><title>Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation (
-
), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines
and concentration of ionized gas (
):
∝
≡
(1 -
).
reduces the scatter in the predicted
by ∼20 - 30% for large clusters (
≳ 10
), as compared to using just
. We show that the dependence on
is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test
on clusters from CAMELS simulations and show that
is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4.</description><subject>Clusters</subject><subject>Estimation</subject><subject>Learning algorithms</subject><subject>Luminosity</subject><subject>Machine learning</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Regression analysis</subject><subject>Scaling</subject><subject>Scattering</subject><subject>Sunyaev-Zeldovich effect</subject><subject>Yttria-stabilized zirconia</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFSEUxYnR2Nfq2p0hceNm2gvDDIMb89JYNWniQt24ITyGeUPDwAjMq2_pfy6T1vqxuSTc3zlwchB6QeCcAK8vZq_SOaVAgTNC4RHaEBCkapmAx2gDQHnVMcpO0GlKNwAgmg6eopO6FTW0QDfo53bZT8Zn6_dYpRzDPB6T1crhVMZ6G41T2Qaf8K3NI56UHq032BkVfdm_wdt5dkWxMjiHwveLXoV5NPjz4o_KHKpvxvXhYPWIB7f8qCaV0vpAziY-Q08G5ZJ5fn-eoa9X775cfqiuP73_eLm9rjSjNFe0bnVruBEl607BTvdEsEYI4IoZ0TAOhlIqBgq9NjtNORetFsPQQ9eTmqj6DL29852X3WQK5HNUTs7RTioeZVBW_rvxdpT7cJAEgJEyisPre4cYvi8mZTnZpI1zypuwJEl513HBG0oK-uo_9CYs0Zd8hRKkZk3L20Jd3FE6hpSiGR5-Q0Cu_cq1X_mn36J4-XeIB_53ofUvbfqksg</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Wadekar, Digvijay</creator><creator>Thiele, Leander</creator><creator>Villaescusa-Navarro, Francisco</creator><creator>Hill, J Colin</creator><creator>Cranmer, Miles</creator><creator>Spergel, David N</creator><creator>Battaglia, Nicholas</creator><creator>Anglés-Alcázar, Daniel</creator><creator>Hernquist, Lars</creator><creator>Ho, Shirley</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4816-0455</orcidid><orcidid>https://orcid.org/0000-0002-9539-0835</orcidid><orcidid>https://orcid.org/0000-0002-2544-7533</orcidid><orcidid>https://orcid.org/0000-0002-6458-3423</orcidid></search><sort><creationdate>20230321</creationdate><title>Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter</title><author>Wadekar, Digvijay ; Thiele, Leander ; Villaescusa-Navarro, Francisco ; Hill, J Colin ; Cranmer, Miles ; Spergel, David N ; Battaglia, Nicholas ; Anglés-Alcázar, Daniel ; Hernquist, Lars ; Ho, Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-236c6e7e9020ba0bcd19459907a4e95470e2229f20dcebc27796c9ffd08d131a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clusters</topic><topic>Estimation</topic><topic>Learning algorithms</topic><topic>Luminosity</topic><topic>Machine learning</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Regression analysis</topic><topic>Scaling</topic><topic>Scattering</topic><topic>Sunyaev-Zeldovich effect</topic><topic>Yttria-stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wadekar, Digvijay</creatorcontrib><creatorcontrib>Thiele, Leander</creatorcontrib><creatorcontrib>Villaescusa-Navarro, Francisco</creatorcontrib><creatorcontrib>Hill, J Colin</creatorcontrib><creatorcontrib>Cranmer, Miles</creatorcontrib><creatorcontrib>Spergel, David N</creatorcontrib><creatorcontrib>Battaglia, Nicholas</creatorcontrib><creatorcontrib>Anglés-Alcázar, Daniel</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><creatorcontrib>Ho, Shirley</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wadekar, Digvijay</au><au>Thiele, Leander</au><au>Villaescusa-Navarro, Francisco</au><au>Hill, J Colin</au><au>Cranmer, Miles</au><au>Spergel, David N</au><au>Battaglia, Nicholas</au><au>Anglés-Alcázar, Daniel</au><au>Hernquist, Lars</au><au>Ho, Shirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-03-21</date><risdate>2023</risdate><volume>120</volume><issue>12</issue><spage>e2202074120</spage><epage>e2202074120</epage><pages>e2202074120-e2202074120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux-cluster mass relation (
-
), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines
and concentration of ionized gas (
):
∝
≡
(1 -
).
reduces the scatter in the predicted
by ∼20 - 30% for large clusters (
≳ 10
), as compared to using just
. We show that the dependence on
is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test
on clusters from CAMELS simulations and show that
is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36930602</pmid><doi>10.1073/pnas.2202074120</doi><orcidid>https://orcid.org/0000-0002-4816-0455</orcidid><orcidid>https://orcid.org/0000-0002-9539-0835</orcidid><orcidid>https://orcid.org/0000-0002-2544-7533</orcidid><orcidid>https://orcid.org/0000-0002-6458-3423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-03, Vol.120 (12), p.e2202074120-e2202074120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10041100 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Clusters Estimation Learning algorithms Luminosity Machine learning Parameters Physical Sciences Physics Regression analysis Scaling Scattering Sunyaev-Zeldovich effect Yttria-stabilized zirconia |
title | Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev-Zeldovich flux-mass scatter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmenting%20astrophysical%20scaling%20relations%20with%20machine%20learning:%20Application%20to%20reducing%20the%20Sunyaev-Zeldovich%20flux-mass%20scatter&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wadekar,%20Digvijay&rft.date=2023-03-21&rft.volume=120&rft.issue=12&rft.spage=e2202074120&rft.epage=e2202074120&rft.pages=e2202074120-e2202074120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2202074120&rft_dat=%3Cproquest_pubme%3E2791345676%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791345676&rft_id=info:pmid/36930602&rfr_iscdi=true |