TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice
Studies have shown that Nrf2 E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found...
Gespeichert in:
Veröffentlicht in: | Oncogene 2022-06, Vol.41 (25), p.3423-3432 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3432 |
---|---|
container_issue | 25 |
container_start_page | 3423 |
container_title | Oncogene |
container_volume | 41 |
creator | Hamad, Samera H. Montgomery, Stephanie A. Simon, Jeremy M. Bowman, Brittany M. Spainhower, Kyle B. Murphy, Ryan M. Knudsen, Erik S. Fenton, Suzanne E. Randell, Scott H. Holt, Jeremiah R. Hayes, D. Neil Witkiewicz, Agnieszka K. Oliver, Trudy G. Major, M. Ben Weissman, Bernard E. |
description | Studies have shown that
Nrf2
E79Q/+
is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual
Trp53/p16
loss, the most common mutations found in human lung tumors, in the presence or absence of
Nrf2
E79Q/+
.
Trp53/p16
-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the
LSL-Nrf2
E79Q
mutation showed no difference in the incidence or latency of C-SCLC compared with
Nrf2
+/+
mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the
LSL-Nrf2
E79Q
allele.
Trp53/p16
-deficient mice also developed P-SCLC, where activation of the NRF2
E79Q
mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE
+
-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development. |
doi_str_mv | 10.1038/s41388-022-02348-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10039451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677214288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-7bb01f2384ac5b44e8a1632faa464a241c838b66a0084feac27b62de5fba9ff13</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERZfCF-CALHFtWHtsx84JVdsuoK6WCpWz5Tjjbar8WewEiW-P2y1tuXAYj6X5vTcjPULecfaRM2GWSXJhTMEAcgmZfy_IgktdFkpV8iVZsEqxogIBx-R1SreMMV0xeEWOhVJaV4YtSH99pcQpXZ1fbuFsecXLU-qGhm7XF7CB5fb7GmjE3dy5Cel0g7QdfNvg4JGOge7niMU978e-bgdsitS7rqMe89PNw456l9mYZbRvPb4hR8F1Cd8-9BPyY31xvfpSbL59_ro62xReajUVuq4ZDyCMdF7VUqJxvBQQnJOldCC5N8LUZekYMzKg86DrEhpUoXZVCFyckE8H3_1c99h4HKboOruPbe_ibzu61v47Gdobuxt_Wc6YqKS6c_jw4BDHnzOmyd6Ocxzy0RZKrYFLMCZTcKB8HFOKGB5XcGbvMrKHjGzOyN5nZFkWvX9-3KPkbygZEAcg5dGww_i0-z-2fwCllppd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677214288</pqid></control><display><type>article</type><title>TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Hamad, Samera H. ; Montgomery, Stephanie A. ; Simon, Jeremy M. ; Bowman, Brittany M. ; Spainhower, Kyle B. ; Murphy, Ryan M. ; Knudsen, Erik S. ; Fenton, Suzanne E. ; Randell, Scott H. ; Holt, Jeremiah R. ; Hayes, D. Neil ; Witkiewicz, Agnieszka K. ; Oliver, Trudy G. ; Major, M. Ben ; Weissman, Bernard E.</creator><creatorcontrib>Hamad, Samera H. ; Montgomery, Stephanie A. ; Simon, Jeremy M. ; Bowman, Brittany M. ; Spainhower, Kyle B. ; Murphy, Ryan M. ; Knudsen, Erik S. ; Fenton, Suzanne E. ; Randell, Scott H. ; Holt, Jeremiah R. ; Hayes, D. Neil ; Witkiewicz, Agnieszka K. ; Oliver, Trudy G. ; Major, M. Ben ; Weissman, Bernard E.</creatorcontrib><description>Studies have shown that
Nrf2
E79Q/+
is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual
Trp53/p16
loss, the most common mutations found in human lung tumors, in the presence or absence of
Nrf2
E79Q/+
.
Trp53/p16
-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the
LSL-Nrf2
E79Q
mutation showed no difference in the incidence or latency of C-SCLC compared with
Nrf2
+/+
mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the
LSL-Nrf2
E79Q
allele.
Trp53/p16
-deficient mice also developed P-SCLC, where activation of the NRF2
E79Q
mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE
+
-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-022-02348-0</identifier><identifier>PMID: 35577980</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/44 ; 14/63 ; 38/1 ; 38/77 ; 45/22 ; 631/208/68 ; 631/67/1612/2143 ; 64/60 ; Animals ; Apoptosis ; Carcinoma, Neuroendocrine - pathology ; Cell Biology ; Cyclin-Dependent Kinase Inhibitor p16 - metabolism ; Homeodomain Proteins - metabolism ; Human Genetics ; Humans ; Immunohistochemistry ; Incidence ; Internal Medicine ; Latency ; Lung cancer ; Lung Neoplasms - pathology ; Medicine ; Medicine & Public Health ; Mice ; Mutation ; Neuroendocrine tumors ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Nuclear Proteins - metabolism ; Oncology ; p53 Protein ; Recombination ; Small cell lung carcinoma ; Small Cell Lung Carcinoma - pathology ; Transcription Factors - metabolism ; Tumor Suppressor Protein p53 - genetics ; Tumors</subject><ispartof>Oncogene, 2022-06, Vol.41 (25), p.3423-3432</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-7bb01f2384ac5b44e8a1632faa464a241c838b66a0084feac27b62de5fba9ff13</citedby><cites>FETCH-LOGICAL-c475t-7bb01f2384ac5b44e8a1632faa464a241c838b66a0084feac27b62de5fba9ff13</cites><orcidid>0000-0002-5130-5969 ; 0000-0002-5201-5015 ; 0000-0002-1827-2309 ; 0000-0003-2082-2397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-022-02348-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-022-02348-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35577980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamad, Samera H.</creatorcontrib><creatorcontrib>Montgomery, Stephanie A.</creatorcontrib><creatorcontrib>Simon, Jeremy M.</creatorcontrib><creatorcontrib>Bowman, Brittany M.</creatorcontrib><creatorcontrib>Spainhower, Kyle B.</creatorcontrib><creatorcontrib>Murphy, Ryan M.</creatorcontrib><creatorcontrib>Knudsen, Erik S.</creatorcontrib><creatorcontrib>Fenton, Suzanne E.</creatorcontrib><creatorcontrib>Randell, Scott H.</creatorcontrib><creatorcontrib>Holt, Jeremiah R.</creatorcontrib><creatorcontrib>Hayes, D. Neil</creatorcontrib><creatorcontrib>Witkiewicz, Agnieszka K.</creatorcontrib><creatorcontrib>Oliver, Trudy G.</creatorcontrib><creatorcontrib>Major, M. Ben</creatorcontrib><creatorcontrib>Weissman, Bernard E.</creatorcontrib><title>TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Studies have shown that
Nrf2
E79Q/+
is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual
Trp53/p16
loss, the most common mutations found in human lung tumors, in the presence or absence of
Nrf2
E79Q/+
.
Trp53/p16
-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the
LSL-Nrf2
E79Q
mutation showed no difference in the incidence or latency of C-SCLC compared with
Nrf2
+/+
mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the
LSL-Nrf2
E79Q
allele.
Trp53/p16
-deficient mice also developed P-SCLC, where activation of the NRF2
E79Q
mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE
+
-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.</description><subject>13/44</subject><subject>14/63</subject><subject>38/1</subject><subject>38/77</subject><subject>45/22</subject><subject>631/208/68</subject><subject>631/67/1612/2143</subject><subject>64/60</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Carcinoma, Neuroendocrine - pathology</subject><subject>Cell Biology</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Incidence</subject><subject>Internal Medicine</subject><subject>Latency</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - pathology</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neuroendocrine tumors</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Recombination</subject><subject>Small cell lung carcinoma</subject><subject>Small Cell Lung Carcinoma - pathology</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9v1DAQxS1ERZfCF-CALHFtWHtsx84JVdsuoK6WCpWz5Tjjbar8WewEiW-P2y1tuXAYj6X5vTcjPULecfaRM2GWSXJhTMEAcgmZfy_IgktdFkpV8iVZsEqxogIBx-R1SreMMV0xeEWOhVJaV4YtSH99pcQpXZ1fbuFsecXLU-qGhm7XF7CB5fb7GmjE3dy5Cel0g7QdfNvg4JGOge7niMU978e-bgdsitS7rqMe89PNw456l9mYZbRvPb4hR8F1Cd8-9BPyY31xvfpSbL59_ro62xReajUVuq4ZDyCMdF7VUqJxvBQQnJOldCC5N8LUZekYMzKg86DrEhpUoXZVCFyckE8H3_1c99h4HKboOruPbe_ibzu61v47Gdobuxt_Wc6YqKS6c_jw4BDHnzOmyd6Ocxzy0RZKrYFLMCZTcKB8HFOKGB5XcGbvMrKHjGzOyN5nZFkWvX9-3KPkbygZEAcg5dGww_i0-z-2fwCllppd</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Hamad, Samera H.</creator><creator>Montgomery, Stephanie A.</creator><creator>Simon, Jeremy M.</creator><creator>Bowman, Brittany M.</creator><creator>Spainhower, Kyle B.</creator><creator>Murphy, Ryan M.</creator><creator>Knudsen, Erik S.</creator><creator>Fenton, Suzanne E.</creator><creator>Randell, Scott H.</creator><creator>Holt, Jeremiah R.</creator><creator>Hayes, D. Neil</creator><creator>Witkiewicz, Agnieszka K.</creator><creator>Oliver, Trudy G.</creator><creator>Major, M. Ben</creator><creator>Weissman, Bernard E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5130-5969</orcidid><orcidid>https://orcid.org/0000-0002-5201-5015</orcidid><orcidid>https://orcid.org/0000-0002-1827-2309</orcidid><orcidid>https://orcid.org/0000-0003-2082-2397</orcidid></search><sort><creationdate>20220617</creationdate><title>TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice</title><author>Hamad, Samera H. ; Montgomery, Stephanie A. ; Simon, Jeremy M. ; Bowman, Brittany M. ; Spainhower, Kyle B. ; Murphy, Ryan M. ; Knudsen, Erik S. ; Fenton, Suzanne E. ; Randell, Scott H. ; Holt, Jeremiah R. ; Hayes, D. Neil ; Witkiewicz, Agnieszka K. ; Oliver, Trudy G. ; Major, M. Ben ; Weissman, Bernard E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-7bb01f2384ac5b44e8a1632faa464a241c838b66a0084feac27b62de5fba9ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/44</topic><topic>14/63</topic><topic>38/1</topic><topic>38/77</topic><topic>45/22</topic><topic>631/208/68</topic><topic>631/67/1612/2143</topic><topic>64/60</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Carcinoma, Neuroendocrine - pathology</topic><topic>Cell Biology</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Incidence</topic><topic>Internal Medicine</topic><topic>Latency</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - pathology</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neuroendocrine tumors</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Recombination</topic><topic>Small cell lung carcinoma</topic><topic>Small Cell Lung Carcinoma - pathology</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamad, Samera H.</creatorcontrib><creatorcontrib>Montgomery, Stephanie A.</creatorcontrib><creatorcontrib>Simon, Jeremy M.</creatorcontrib><creatorcontrib>Bowman, Brittany M.</creatorcontrib><creatorcontrib>Spainhower, Kyle B.</creatorcontrib><creatorcontrib>Murphy, Ryan M.</creatorcontrib><creatorcontrib>Knudsen, Erik S.</creatorcontrib><creatorcontrib>Fenton, Suzanne E.</creatorcontrib><creatorcontrib>Randell, Scott H.</creatorcontrib><creatorcontrib>Holt, Jeremiah R.</creatorcontrib><creatorcontrib>Hayes, D. Neil</creatorcontrib><creatorcontrib>Witkiewicz, Agnieszka K.</creatorcontrib><creatorcontrib>Oliver, Trudy G.</creatorcontrib><creatorcontrib>Major, M. Ben</creatorcontrib><creatorcontrib>Weissman, Bernard E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamad, Samera H.</au><au>Montgomery, Stephanie A.</au><au>Simon, Jeremy M.</au><au>Bowman, Brittany M.</au><au>Spainhower, Kyle B.</au><au>Murphy, Ryan M.</au><au>Knudsen, Erik S.</au><au>Fenton, Suzanne E.</au><au>Randell, Scott H.</au><au>Holt, Jeremiah R.</au><au>Hayes, D. Neil</au><au>Witkiewicz, Agnieszka K.</au><au>Oliver, Trudy G.</au><au>Major, M. Ben</au><au>Weissman, Bernard E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2022-06-17</date><risdate>2022</risdate><volume>41</volume><issue>25</issue><spage>3423</spage><epage>3432</epage><pages>3423-3432</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Studies have shown that
Nrf2
E79Q/+
is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual
Trp53/p16
loss, the most common mutations found in human lung tumors, in the presence or absence of
Nrf2
E79Q/+
.
Trp53/p16
-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the
LSL-Nrf2
E79Q
mutation showed no difference in the incidence or latency of C-SCLC compared with
Nrf2
+/+
mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the
LSL-Nrf2
E79Q
allele.
Trp53/p16
-deficient mice also developed P-SCLC, where activation of the NRF2
E79Q
mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE
+
-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35577980</pmid><doi>10.1038/s41388-022-02348-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5130-5969</orcidid><orcidid>https://orcid.org/0000-0002-5201-5015</orcidid><orcidid>https://orcid.org/0000-0002-1827-2309</orcidid><orcidid>https://orcid.org/0000-0003-2082-2397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2022-06, Vol.41 (25), p.3423-3432 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10039451 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 13/44 14/63 38/1 38/77 45/22 631/208/68 631/67/1612/2143 64/60 Animals Apoptosis Carcinoma, Neuroendocrine - pathology Cell Biology Cyclin-Dependent Kinase Inhibitor p16 - metabolism Homeodomain Proteins - metabolism Human Genetics Humans Immunohistochemistry Incidence Internal Medicine Latency Lung cancer Lung Neoplasms - pathology Medicine Medicine & Public Health Mice Mutation Neuroendocrine tumors NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism Nuclear Proteins - metabolism Oncology p53 Protein Recombination Small cell lung carcinoma Small Cell Lung Carcinoma - pathology Transcription Factors - metabolism Tumor Suppressor Protein p53 - genetics Tumors |
title | TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TP53,%20CDKN2A/P16,%20and%20NFE2L2/NRF2%20regulate%20the%20incidence%20of%20pure-%20and%20combined-small%20cell%20lung%20cancer%20in%20mice&rft.jtitle=Oncogene&rft.au=Hamad,%20Samera%20H.&rft.date=2022-06-17&rft.volume=41&rft.issue=25&rft.spage=3423&rft.epage=3432&rft.pages=3423-3432&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-022-02348-0&rft_dat=%3Cproquest_pubme%3E2677214288%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677214288&rft_id=info:pmid/35577980&rfr_iscdi=true |