TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice

Studies have shown that Nrf2 E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2022-06, Vol.41 (25), p.3423-3432
Hauptverfasser: Hamad, Samera H., Montgomery, Stephanie A., Simon, Jeremy M., Bowman, Brittany M., Spainhower, Kyle B., Murphy, Ryan M., Knudsen, Erik S., Fenton, Suzanne E., Randell, Scott H., Holt, Jeremiah R., Hayes, D. Neil, Witkiewicz, Agnieszka K., Oliver, Trudy G., Major, M. Ben, Weissman, Bernard E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3432
container_issue 25
container_start_page 3423
container_title Oncogene
container_volume 41
creator Hamad, Samera H.
Montgomery, Stephanie A.
Simon, Jeremy M.
Bowman, Brittany M.
Spainhower, Kyle B.
Murphy, Ryan M.
Knudsen, Erik S.
Fenton, Suzanne E.
Randell, Scott H.
Holt, Jeremiah R.
Hayes, D. Neil
Witkiewicz, Agnieszka K.
Oliver, Trudy G.
Major, M. Ben
Weissman, Bernard E.
description Studies have shown that Nrf2 E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2 E79Q/+ . Trp53/p16 -deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2 E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2 +/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2 E79Q allele. Trp53/p16 -deficient mice also developed P-SCLC, where activation of the NRF2 E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE + -lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.
doi_str_mv 10.1038/s41388-022-02348-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10039451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677214288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-7bb01f2384ac5b44e8a1632faa464a241c838b66a0084feac27b62de5fba9ff13</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERZfCF-CALHFtWHtsx84JVdsuoK6WCpWz5Tjjbar8WewEiW-P2y1tuXAYj6X5vTcjPULecfaRM2GWSXJhTMEAcgmZfy_IgktdFkpV8iVZsEqxogIBx-R1SreMMV0xeEWOhVJaV4YtSH99pcQpXZ1fbuFsecXLU-qGhm7XF7CB5fb7GmjE3dy5Cel0g7QdfNvg4JGOge7niMU978e-bgdsitS7rqMe89PNw456l9mYZbRvPb4hR8F1Cd8-9BPyY31xvfpSbL59_ro62xReajUVuq4ZDyCMdF7VUqJxvBQQnJOldCC5N8LUZekYMzKg86DrEhpUoXZVCFyckE8H3_1c99h4HKboOruPbe_ibzu61v47Gdobuxt_Wc6YqKS6c_jw4BDHnzOmyd6Ocxzy0RZKrYFLMCZTcKB8HFOKGB5XcGbvMrKHjGzOyN5nZFkWvX9-3KPkbygZEAcg5dGww_i0-z-2fwCllppd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677214288</pqid></control><display><type>article</type><title>TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Hamad, Samera H. ; Montgomery, Stephanie A. ; Simon, Jeremy M. ; Bowman, Brittany M. ; Spainhower, Kyle B. ; Murphy, Ryan M. ; Knudsen, Erik S. ; Fenton, Suzanne E. ; Randell, Scott H. ; Holt, Jeremiah R. ; Hayes, D. Neil ; Witkiewicz, Agnieszka K. ; Oliver, Trudy G. ; Major, M. Ben ; Weissman, Bernard E.</creator><creatorcontrib>Hamad, Samera H. ; Montgomery, Stephanie A. ; Simon, Jeremy M. ; Bowman, Brittany M. ; Spainhower, Kyle B. ; Murphy, Ryan M. ; Knudsen, Erik S. ; Fenton, Suzanne E. ; Randell, Scott H. ; Holt, Jeremiah R. ; Hayes, D. Neil ; Witkiewicz, Agnieszka K. ; Oliver, Trudy G. ; Major, M. Ben ; Weissman, Bernard E.</creatorcontrib><description>Studies have shown that Nrf2 E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2 E79Q/+ . Trp53/p16 -deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2 E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2 +/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2 E79Q allele. Trp53/p16 -deficient mice also developed P-SCLC, where activation of the NRF2 E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE + -lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-022-02348-0</identifier><identifier>PMID: 35577980</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/44 ; 14/63 ; 38/1 ; 38/77 ; 45/22 ; 631/208/68 ; 631/67/1612/2143 ; 64/60 ; Animals ; Apoptosis ; Carcinoma, Neuroendocrine - pathology ; Cell Biology ; Cyclin-Dependent Kinase Inhibitor p16 - metabolism ; Homeodomain Proteins - metabolism ; Human Genetics ; Humans ; Immunohistochemistry ; Incidence ; Internal Medicine ; Latency ; Lung cancer ; Lung Neoplasms - pathology ; Medicine ; Medicine &amp; Public Health ; Mice ; Mutation ; Neuroendocrine tumors ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Nuclear Proteins - metabolism ; Oncology ; p53 Protein ; Recombination ; Small cell lung carcinoma ; Small Cell Lung Carcinoma - pathology ; Transcription Factors - metabolism ; Tumor Suppressor Protein p53 - genetics ; Tumors</subject><ispartof>Oncogene, 2022-06, Vol.41 (25), p.3423-3432</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-7bb01f2384ac5b44e8a1632faa464a241c838b66a0084feac27b62de5fba9ff13</citedby><cites>FETCH-LOGICAL-c475t-7bb01f2384ac5b44e8a1632faa464a241c838b66a0084feac27b62de5fba9ff13</cites><orcidid>0000-0002-5130-5969 ; 0000-0002-5201-5015 ; 0000-0002-1827-2309 ; 0000-0003-2082-2397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-022-02348-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-022-02348-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35577980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamad, Samera H.</creatorcontrib><creatorcontrib>Montgomery, Stephanie A.</creatorcontrib><creatorcontrib>Simon, Jeremy M.</creatorcontrib><creatorcontrib>Bowman, Brittany M.</creatorcontrib><creatorcontrib>Spainhower, Kyle B.</creatorcontrib><creatorcontrib>Murphy, Ryan M.</creatorcontrib><creatorcontrib>Knudsen, Erik S.</creatorcontrib><creatorcontrib>Fenton, Suzanne E.</creatorcontrib><creatorcontrib>Randell, Scott H.</creatorcontrib><creatorcontrib>Holt, Jeremiah R.</creatorcontrib><creatorcontrib>Hayes, D. Neil</creatorcontrib><creatorcontrib>Witkiewicz, Agnieszka K.</creatorcontrib><creatorcontrib>Oliver, Trudy G.</creatorcontrib><creatorcontrib>Major, M. Ben</creatorcontrib><creatorcontrib>Weissman, Bernard E.</creatorcontrib><title>TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Studies have shown that Nrf2 E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2 E79Q/+ . Trp53/p16 -deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2 E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2 +/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2 E79Q allele. Trp53/p16 -deficient mice also developed P-SCLC, where activation of the NRF2 E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE + -lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.</description><subject>13/44</subject><subject>14/63</subject><subject>38/1</subject><subject>38/77</subject><subject>45/22</subject><subject>631/208/68</subject><subject>631/67/1612/2143</subject><subject>64/60</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Carcinoma, Neuroendocrine - pathology</subject><subject>Cell Biology</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Incidence</subject><subject>Internal Medicine</subject><subject>Latency</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - pathology</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neuroendocrine tumors</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Recombination</subject><subject>Small cell lung carcinoma</subject><subject>Small Cell Lung Carcinoma - pathology</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9v1DAQxS1ERZfCF-CALHFtWHtsx84JVdsuoK6WCpWz5Tjjbar8WewEiW-P2y1tuXAYj6X5vTcjPULecfaRM2GWSXJhTMEAcgmZfy_IgktdFkpV8iVZsEqxogIBx-R1SreMMV0xeEWOhVJaV4YtSH99pcQpXZ1fbuFsecXLU-qGhm7XF7CB5fb7GmjE3dy5Cel0g7QdfNvg4JGOge7niMU978e-bgdsitS7rqMe89PNw456l9mYZbRvPb4hR8F1Cd8-9BPyY31xvfpSbL59_ro62xReajUVuq4ZDyCMdF7VUqJxvBQQnJOldCC5N8LUZekYMzKg86DrEhpUoXZVCFyckE8H3_1c99h4HKboOruPbe_ibzu61v47Gdobuxt_Wc6YqKS6c_jw4BDHnzOmyd6Ocxzy0RZKrYFLMCZTcKB8HFOKGB5XcGbvMrKHjGzOyN5nZFkWvX9-3KPkbygZEAcg5dGww_i0-z-2fwCllppd</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Hamad, Samera H.</creator><creator>Montgomery, Stephanie A.</creator><creator>Simon, Jeremy M.</creator><creator>Bowman, Brittany M.</creator><creator>Spainhower, Kyle B.</creator><creator>Murphy, Ryan M.</creator><creator>Knudsen, Erik S.</creator><creator>Fenton, Suzanne E.</creator><creator>Randell, Scott H.</creator><creator>Holt, Jeremiah R.</creator><creator>Hayes, D. Neil</creator><creator>Witkiewicz, Agnieszka K.</creator><creator>Oliver, Trudy G.</creator><creator>Major, M. Ben</creator><creator>Weissman, Bernard E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5130-5969</orcidid><orcidid>https://orcid.org/0000-0002-5201-5015</orcidid><orcidid>https://orcid.org/0000-0002-1827-2309</orcidid><orcidid>https://orcid.org/0000-0003-2082-2397</orcidid></search><sort><creationdate>20220617</creationdate><title>TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice</title><author>Hamad, Samera H. ; Montgomery, Stephanie A. ; Simon, Jeremy M. ; Bowman, Brittany M. ; Spainhower, Kyle B. ; Murphy, Ryan M. ; Knudsen, Erik S. ; Fenton, Suzanne E. ; Randell, Scott H. ; Holt, Jeremiah R. ; Hayes, D. Neil ; Witkiewicz, Agnieszka K. ; Oliver, Trudy G. ; Major, M. Ben ; Weissman, Bernard E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-7bb01f2384ac5b44e8a1632faa464a241c838b66a0084feac27b62de5fba9ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/44</topic><topic>14/63</topic><topic>38/1</topic><topic>38/77</topic><topic>45/22</topic><topic>631/208/68</topic><topic>631/67/1612/2143</topic><topic>64/60</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Carcinoma, Neuroendocrine - pathology</topic><topic>Cell Biology</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Incidence</topic><topic>Internal Medicine</topic><topic>Latency</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - pathology</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neuroendocrine tumors</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Recombination</topic><topic>Small cell lung carcinoma</topic><topic>Small Cell Lung Carcinoma - pathology</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamad, Samera H.</creatorcontrib><creatorcontrib>Montgomery, Stephanie A.</creatorcontrib><creatorcontrib>Simon, Jeremy M.</creatorcontrib><creatorcontrib>Bowman, Brittany M.</creatorcontrib><creatorcontrib>Spainhower, Kyle B.</creatorcontrib><creatorcontrib>Murphy, Ryan M.</creatorcontrib><creatorcontrib>Knudsen, Erik S.</creatorcontrib><creatorcontrib>Fenton, Suzanne E.</creatorcontrib><creatorcontrib>Randell, Scott H.</creatorcontrib><creatorcontrib>Holt, Jeremiah R.</creatorcontrib><creatorcontrib>Hayes, D. Neil</creatorcontrib><creatorcontrib>Witkiewicz, Agnieszka K.</creatorcontrib><creatorcontrib>Oliver, Trudy G.</creatorcontrib><creatorcontrib>Major, M. Ben</creatorcontrib><creatorcontrib>Weissman, Bernard E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamad, Samera H.</au><au>Montgomery, Stephanie A.</au><au>Simon, Jeremy M.</au><au>Bowman, Brittany M.</au><au>Spainhower, Kyle B.</au><au>Murphy, Ryan M.</au><au>Knudsen, Erik S.</au><au>Fenton, Suzanne E.</au><au>Randell, Scott H.</au><au>Holt, Jeremiah R.</au><au>Hayes, D. Neil</au><au>Witkiewicz, Agnieszka K.</au><au>Oliver, Trudy G.</au><au>Major, M. Ben</au><au>Weissman, Bernard E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2022-06-17</date><risdate>2022</risdate><volume>41</volume><issue>25</issue><spage>3423</spage><epage>3432</epage><pages>3423-3432</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Studies have shown that Nrf2 E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2 E79Q/+ . Trp53/p16 -deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2 E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2 +/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2 E79Q allele. Trp53/p16 -deficient mice also developed P-SCLC, where activation of the NRF2 E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE + -lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35577980</pmid><doi>10.1038/s41388-022-02348-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5130-5969</orcidid><orcidid>https://orcid.org/0000-0002-5201-5015</orcidid><orcidid>https://orcid.org/0000-0002-1827-2309</orcidid><orcidid>https://orcid.org/0000-0003-2082-2397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2022-06, Vol.41 (25), p.3423-3432
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10039451
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 13/44
14/63
38/1
38/77
45/22
631/208/68
631/67/1612/2143
64/60
Animals
Apoptosis
Carcinoma, Neuroendocrine - pathology
Cell Biology
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
Homeodomain Proteins - metabolism
Human Genetics
Humans
Immunohistochemistry
Incidence
Internal Medicine
Latency
Lung cancer
Lung Neoplasms - pathology
Medicine
Medicine & Public Health
Mice
Mutation
Neuroendocrine tumors
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Nuclear Proteins - metabolism
Oncology
p53 Protein
Recombination
Small cell lung carcinoma
Small Cell Lung Carcinoma - pathology
Transcription Factors - metabolism
Tumor Suppressor Protein p53 - genetics
Tumors
title TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TP53,%20CDKN2A/P16,%20and%20NFE2L2/NRF2%20regulate%20the%20incidence%20of%20pure-%20and%20combined-small%20cell%20lung%20cancer%20in%20mice&rft.jtitle=Oncogene&rft.au=Hamad,%20Samera%20H.&rft.date=2022-06-17&rft.volume=41&rft.issue=25&rft.spage=3423&rft.epage=3432&rft.pages=3423-3432&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-022-02348-0&rft_dat=%3Cproquest_pubme%3E2677214288%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677214288&rft_id=info:pmid/35577980&rfr_iscdi=true