Lower extremity Interlimb coordination associated brain activity in young female athletes: A biomechanically instrumented neuroimaging study

Bilateral sensorimotor coordination is required for everyday activities, such as walking and sitting down/standing up from a chair. Sensorimotor coordination functional neuroimaging (fMRI) paradigms (e.g., stepping, cycling) increase activity in the sensorimotor cortex, supplementary motor area, ins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychophysiology 2023-04, Vol.60 (4), p.e14221-n/a
Hauptverfasser: Slutsky‐Ganesh, Alexis B., Anand, Manish, Diekfuss, Jed A., Myer, Gregory D., Grooms, Dustin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e14221
container_title Psychophysiology
container_volume 60
creator Slutsky‐Ganesh, Alexis B.
Anand, Manish
Diekfuss, Jed A.
Myer, Gregory D.
Grooms, Dustin R.
description Bilateral sensorimotor coordination is required for everyday activities, such as walking and sitting down/standing up from a chair. Sensorimotor coordination functional neuroimaging (fMRI) paradigms (e.g., stepping, cycling) increase activity in the sensorimotor cortex, supplementary motor area, insula, and cerebellum. Although these paradigms are designed to assay coordination, performance measures are rarely collected simultaneously with fMRI. Therefore, we aimed to identify neural correlates of lower extremity coordination using a bilateral, in‐phase, multi‐joint coordination task with concurrent MRI‐compatible 3D motion analysis. Seventeen female athletes (15.0 ± 1.4 years) completed a bilateral, multi‐joint lower‐extremity coordination task during brain fMRI. Interlimb coordination was quantified from kinematic data as the correlation between peak‐to‐peak knee flexion cycle time between legs. Standard preprocessing and whole‐brain analyses for task‐based fMRI were completed in FSL, controlling for total movement cycles and neuroanatomical differences, with interlimb coordination as a covariate of interest. A clusterwise multi‐comparison correction was applied at z > 3.1 and p 
doi_str_mv 10.1111/psyp.14221
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10038871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739431439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-a52dcb816a3b034a6c75ff1b1e2275b7e334bda63c0fa26876384136a396ec233</originalsourceid><addsrcrecordid>eNp9kc1qFTEYhoMo9rS68QJkwI0UpubvZDJupBR_CgcsqAtXIZP55pyUTHJMMq1zD160GU8t6sJsEpLne3jDi9Azgs9IWa_2ad6fEU4peYBWhIu2lq0UD9EKYy7rddPQI3Sc0jXGuCWUPkZHTHAi1g1foR-bcAuxgu85wmjzXF36DNHZsatMCLG3XmcbfKVTCsbqDH3VRW3Lhcn2Zhko5zlMflsNMGoHlc47BxnS6-q86mwYwey0t0Y7t7Apx2kEv3g8TDHYUW9tGU556ucn6NGgXYKnd_sJ-vLu7eeLD_Xm4_vLi_NNbThhpNZr2ptOEqFZhxnXwjTrYSAdAUqbddcAY7zrtWAGD5oK2Qgmy2DBWwGGMnaC3hy8-6kboTclT9RO7WNJE2cVtFV_v3i7U9twowjGTMqGFMPLO0MM3yZIWY02GXBOewhTUrRhLWeEs7agL_5Br8MUfflfodpSEZYSF-r0QJkYUoow3KchWC0tq6Vl9avlAj__M_89-rvWApADcGsdzP9RqatPX68O0p_Lh7by</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790040880</pqid></control><display><type>article</type><title>Lower extremity Interlimb coordination associated brain activity in young female athletes: A biomechanically instrumented neuroimaging study</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Slutsky‐Ganesh, Alexis B. ; Anand, Manish ; Diekfuss, Jed A. ; Myer, Gregory D. ; Grooms, Dustin R.</creator><creatorcontrib>Slutsky‐Ganesh, Alexis B. ; Anand, Manish ; Diekfuss, Jed A. ; Myer, Gregory D. ; Grooms, Dustin R.</creatorcontrib><description>Bilateral sensorimotor coordination is required for everyday activities, such as walking and sitting down/standing up from a chair. Sensorimotor coordination functional neuroimaging (fMRI) paradigms (e.g., stepping, cycling) increase activity in the sensorimotor cortex, supplementary motor area, insula, and cerebellum. Although these paradigms are designed to assay coordination, performance measures are rarely collected simultaneously with fMRI. Therefore, we aimed to identify neural correlates of lower extremity coordination using a bilateral, in‐phase, multi‐joint coordination task with concurrent MRI‐compatible 3D motion analysis. Seventeen female athletes (15.0 ± 1.4 years) completed a bilateral, multi‐joint lower‐extremity coordination task during brain fMRI. Interlimb coordination was quantified from kinematic data as the correlation between peak‐to‐peak knee flexion cycle time between legs. Standard preprocessing and whole‐brain analyses for task‐based fMRI were completed in FSL, controlling for total movement cycles and neuroanatomical differences, with interlimb coordination as a covariate of interest. A clusterwise multi‐comparison correction was applied at z &gt; 3.1 and p &lt; .05. Less interlimb coordination during the task was associated with greater activation in the posterior cingulate and precuneus (zmax = 6.41, p &lt; .01) and the lateral occipital cortex (zmax = 7.55, p = .02). The inability to maintain interlimb coordination alongside greater activity in attention‐ and sensory‐related brain regions may indicate a failed compensatory neural strategy to execute the task. Alternatively, greater activity could be secondary to reduced afferent acuity that may be elevating central demand to maintain in‐phase lower extremity motor coordination. Future research aiming to improve sensorimotor coordination should consider interventional approaches uniquely capable of promoting adaptive neuroplasticity to enhance motor control. In the first report of a bilateral lower extremity, in‐phase, multi‐joint coordination fMRI motor paradigm with concurrent kinematics, we found that lower extremity coordination was negatively associated with neural activity in the posterior cingulate gyrus, precuneus, and lateral occipital cortex; such that poorer coordination is associated with greater activity. This alteration may indicate a failed compensatory strategy to maintain motor control or higher central demand downstream from reduced afferent acuity.</description><identifier>ISSN: 0048-5772</identifier><identifier>EISSN: 1469-8986</identifier><identifier>EISSN: 1540-5958</identifier><identifier>DOI: 10.1111/psyp.14221</identifier><identifier>PMID: 36416574</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acuity ; Anatomy ; Attention ; Brain architecture ; Brain mapping ; central nervous system ; Cerebellum ; Cortex (motor) ; Cortex (parietal) ; Female ; fMRI ; Functional magnetic resonance imaging ; human movement ; Humans ; in‐phase ; kinematics ; Leg - physiology ; Lower Extremity - diagnostic imaging ; Medical imaging ; Motor task performance ; Neuroimaging ; Neuroplasticity ; Occipital lobe ; Sensorimotor Cortex ; Sensory neurons ; Somatosensory cortex ; Supplementary motor area ; Walking - physiology</subject><ispartof>Psychophysiology, 2023-04, Vol.60 (4), p.e14221-n/a</ispartof><rights>2022 Society for Psychophysiological Research.</rights><rights>Copyright © 2023 by the Society for Psychophysiological Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-a52dcb816a3b034a6c75ff1b1e2275b7e334bda63c0fa26876384136a396ec233</citedby><cites>FETCH-LOGICAL-c4131-a52dcb816a3b034a6c75ff1b1e2275b7e334bda63c0fa26876384136a396ec233</cites><orcidid>0000-0001-6102-8224 ; 0000-0001-6905-0266 ; 0000-0003-3835-363X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpsyp.14221$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpsyp.14221$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36416574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slutsky‐Ganesh, Alexis B.</creatorcontrib><creatorcontrib>Anand, Manish</creatorcontrib><creatorcontrib>Diekfuss, Jed A.</creatorcontrib><creatorcontrib>Myer, Gregory D.</creatorcontrib><creatorcontrib>Grooms, Dustin R.</creatorcontrib><title>Lower extremity Interlimb coordination associated brain activity in young female athletes: A biomechanically instrumented neuroimaging study</title><title>Psychophysiology</title><addtitle>Psychophysiology</addtitle><description>Bilateral sensorimotor coordination is required for everyday activities, such as walking and sitting down/standing up from a chair. Sensorimotor coordination functional neuroimaging (fMRI) paradigms (e.g., stepping, cycling) increase activity in the sensorimotor cortex, supplementary motor area, insula, and cerebellum. Although these paradigms are designed to assay coordination, performance measures are rarely collected simultaneously with fMRI. Therefore, we aimed to identify neural correlates of lower extremity coordination using a bilateral, in‐phase, multi‐joint coordination task with concurrent MRI‐compatible 3D motion analysis. Seventeen female athletes (15.0 ± 1.4 years) completed a bilateral, multi‐joint lower‐extremity coordination task during brain fMRI. Interlimb coordination was quantified from kinematic data as the correlation between peak‐to‐peak knee flexion cycle time between legs. Standard preprocessing and whole‐brain analyses for task‐based fMRI were completed in FSL, controlling for total movement cycles and neuroanatomical differences, with interlimb coordination as a covariate of interest. A clusterwise multi‐comparison correction was applied at z &gt; 3.1 and p &lt; .05. Less interlimb coordination during the task was associated with greater activation in the posterior cingulate and precuneus (zmax = 6.41, p &lt; .01) and the lateral occipital cortex (zmax = 7.55, p = .02). The inability to maintain interlimb coordination alongside greater activity in attention‐ and sensory‐related brain regions may indicate a failed compensatory neural strategy to execute the task. Alternatively, greater activity could be secondary to reduced afferent acuity that may be elevating central demand to maintain in‐phase lower extremity motor coordination. Future research aiming to improve sensorimotor coordination should consider interventional approaches uniquely capable of promoting adaptive neuroplasticity to enhance motor control. In the first report of a bilateral lower extremity, in‐phase, multi‐joint coordination fMRI motor paradigm with concurrent kinematics, we found that lower extremity coordination was negatively associated with neural activity in the posterior cingulate gyrus, precuneus, and lateral occipital cortex; such that poorer coordination is associated with greater activity. This alteration may indicate a failed compensatory strategy to maintain motor control or higher central demand downstream from reduced afferent acuity.</description><subject>Acuity</subject><subject>Anatomy</subject><subject>Attention</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>central nervous system</subject><subject>Cerebellum</subject><subject>Cortex (motor)</subject><subject>Cortex (parietal)</subject><subject>Female</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>human movement</subject><subject>Humans</subject><subject>in‐phase</subject><subject>kinematics</subject><subject>Leg - physiology</subject><subject>Lower Extremity - diagnostic imaging</subject><subject>Medical imaging</subject><subject>Motor task performance</subject><subject>Neuroimaging</subject><subject>Neuroplasticity</subject><subject>Occipital lobe</subject><subject>Sensorimotor Cortex</subject><subject>Sensory neurons</subject><subject>Somatosensory cortex</subject><subject>Supplementary motor area</subject><subject>Walking - physiology</subject><issn>0048-5772</issn><issn>1469-8986</issn><issn>1540-5958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1qFTEYhoMo9rS68QJkwI0UpubvZDJupBR_CgcsqAtXIZP55pyUTHJMMq1zD160GU8t6sJsEpLne3jDi9Azgs9IWa_2ad6fEU4peYBWhIu2lq0UD9EKYy7rddPQI3Sc0jXGuCWUPkZHTHAi1g1foR-bcAuxgu85wmjzXF36DNHZsatMCLG3XmcbfKVTCsbqDH3VRW3Lhcn2Zhko5zlMflsNMGoHlc47BxnS6-q86mwYwey0t0Y7t7Apx2kEv3g8TDHYUW9tGU556ucn6NGgXYKnd_sJ-vLu7eeLD_Xm4_vLi_NNbThhpNZr2ptOEqFZhxnXwjTrYSAdAUqbddcAY7zrtWAGD5oK2Qgmy2DBWwGGMnaC3hy8-6kboTclT9RO7WNJE2cVtFV_v3i7U9twowjGTMqGFMPLO0MM3yZIWY02GXBOewhTUrRhLWeEs7agL_5Br8MUfflfodpSEZYSF-r0QJkYUoow3KchWC0tq6Vl9avlAj__M_89-rvWApADcGsdzP9RqatPX68O0p_Lh7by</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Slutsky‐Ganesh, Alexis B.</creator><creator>Anand, Manish</creator><creator>Diekfuss, Jed A.</creator><creator>Myer, Gregory D.</creator><creator>Grooms, Dustin R.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6102-8224</orcidid><orcidid>https://orcid.org/0000-0001-6905-0266</orcidid><orcidid>https://orcid.org/0000-0003-3835-363X</orcidid></search><sort><creationdate>202304</creationdate><title>Lower extremity Interlimb coordination associated brain activity in young female athletes: A biomechanically instrumented neuroimaging study</title><author>Slutsky‐Ganesh, Alexis B. ; Anand, Manish ; Diekfuss, Jed A. ; Myer, Gregory D. ; Grooms, Dustin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-a52dcb816a3b034a6c75ff1b1e2275b7e334bda63c0fa26876384136a396ec233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acuity</topic><topic>Anatomy</topic><topic>Attention</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>central nervous system</topic><topic>Cerebellum</topic><topic>Cortex (motor)</topic><topic>Cortex (parietal)</topic><topic>Female</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>human movement</topic><topic>Humans</topic><topic>in‐phase</topic><topic>kinematics</topic><topic>Leg - physiology</topic><topic>Lower Extremity - diagnostic imaging</topic><topic>Medical imaging</topic><topic>Motor task performance</topic><topic>Neuroimaging</topic><topic>Neuroplasticity</topic><topic>Occipital lobe</topic><topic>Sensorimotor Cortex</topic><topic>Sensory neurons</topic><topic>Somatosensory cortex</topic><topic>Supplementary motor area</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slutsky‐Ganesh, Alexis B.</creatorcontrib><creatorcontrib>Anand, Manish</creatorcontrib><creatorcontrib>Diekfuss, Jed A.</creatorcontrib><creatorcontrib>Myer, Gregory D.</creatorcontrib><creatorcontrib>Grooms, Dustin R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slutsky‐Ganesh, Alexis B.</au><au>Anand, Manish</au><au>Diekfuss, Jed A.</au><au>Myer, Gregory D.</au><au>Grooms, Dustin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower extremity Interlimb coordination associated brain activity in young female athletes: A biomechanically instrumented neuroimaging study</atitle><jtitle>Psychophysiology</jtitle><addtitle>Psychophysiology</addtitle><date>2023-04</date><risdate>2023</risdate><volume>60</volume><issue>4</issue><spage>e14221</spage><epage>n/a</epage><pages>e14221-n/a</pages><issn>0048-5772</issn><eissn>1469-8986</eissn><eissn>1540-5958</eissn><abstract>Bilateral sensorimotor coordination is required for everyday activities, such as walking and sitting down/standing up from a chair. Sensorimotor coordination functional neuroimaging (fMRI) paradigms (e.g., stepping, cycling) increase activity in the sensorimotor cortex, supplementary motor area, insula, and cerebellum. Although these paradigms are designed to assay coordination, performance measures are rarely collected simultaneously with fMRI. Therefore, we aimed to identify neural correlates of lower extremity coordination using a bilateral, in‐phase, multi‐joint coordination task with concurrent MRI‐compatible 3D motion analysis. Seventeen female athletes (15.0 ± 1.4 years) completed a bilateral, multi‐joint lower‐extremity coordination task during brain fMRI. Interlimb coordination was quantified from kinematic data as the correlation between peak‐to‐peak knee flexion cycle time between legs. Standard preprocessing and whole‐brain analyses for task‐based fMRI were completed in FSL, controlling for total movement cycles and neuroanatomical differences, with interlimb coordination as a covariate of interest. A clusterwise multi‐comparison correction was applied at z &gt; 3.1 and p &lt; .05. Less interlimb coordination during the task was associated with greater activation in the posterior cingulate and precuneus (zmax = 6.41, p &lt; .01) and the lateral occipital cortex (zmax = 7.55, p = .02). The inability to maintain interlimb coordination alongside greater activity in attention‐ and sensory‐related brain regions may indicate a failed compensatory neural strategy to execute the task. Alternatively, greater activity could be secondary to reduced afferent acuity that may be elevating central demand to maintain in‐phase lower extremity motor coordination. Future research aiming to improve sensorimotor coordination should consider interventional approaches uniquely capable of promoting adaptive neuroplasticity to enhance motor control. In the first report of a bilateral lower extremity, in‐phase, multi‐joint coordination fMRI motor paradigm with concurrent kinematics, we found that lower extremity coordination was negatively associated with neural activity in the posterior cingulate gyrus, precuneus, and lateral occipital cortex; such that poorer coordination is associated with greater activity. This alteration may indicate a failed compensatory strategy to maintain motor control or higher central demand downstream from reduced afferent acuity.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>36416574</pmid><doi>10.1111/psyp.14221</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6102-8224</orcidid><orcidid>https://orcid.org/0000-0001-6905-0266</orcidid><orcidid>https://orcid.org/0000-0003-3835-363X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0048-5772
ispartof Psychophysiology, 2023-04, Vol.60 (4), p.e14221-n/a
issn 0048-5772
1469-8986
1540-5958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10038871
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acuity
Anatomy
Attention
Brain architecture
Brain mapping
central nervous system
Cerebellum
Cortex (motor)
Cortex (parietal)
Female
fMRI
Functional magnetic resonance imaging
human movement
Humans
in‐phase
kinematics
Leg - physiology
Lower Extremity - diagnostic imaging
Medical imaging
Motor task performance
Neuroimaging
Neuroplasticity
Occipital lobe
Sensorimotor Cortex
Sensory neurons
Somatosensory cortex
Supplementary motor area
Walking - physiology
title Lower extremity Interlimb coordination associated brain activity in young female athletes: A biomechanically instrumented neuroimaging study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20extremity%20Interlimb%20coordination%20associated%20brain%20activity%20in%20young%20female%20athletes:%20A%20biomechanically%20instrumented%20neuroimaging%20study&rft.jtitle=Psychophysiology&rft.au=Slutsky%E2%80%90Ganesh,%20Alexis%20B.&rft.date=2023-04&rft.volume=60&rft.issue=4&rft.spage=e14221&rft.epage=n/a&rft.pages=e14221-n/a&rft.issn=0048-5772&rft.eissn=1469-8986&rft_id=info:doi/10.1111/psyp.14221&rft_dat=%3Cproquest_pubme%3E2739431439%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790040880&rft_id=info:pmid/36416574&rfr_iscdi=true