Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery

Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-03, Vol.145 (11), p.6210-6220
Hauptverfasser: Uchida, Noriyuki, Ryu, Yunosuke, Takagi, Yuichiro, Yoshizawa, Ken, Suzuki, Kotono, Anraku, Yasutaka, Ajioka, Itsuki, Shimokawa, Naofumi, Takagi, Masahiro, Hoshino, Norihisa, Akutagawa, Tomoyuki, Matsubara, Teruhiko, Sato, Toshinori, Higuchi, Yuji, Ito, Hiroaki, Morita, Masamune, Muraoka, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6220
container_issue 11
container_start_page 6210
container_title Journal of the American Chemical Society
container_volume 145
creator Uchida, Noriyuki
Ryu, Yunosuke
Takagi, Yuichiro
Yoshizawa, Ken
Suzuki, Kotono
Anraku, Yasutaka
Ajioka, Itsuki
Shimokawa, Naofumi
Takagi, Masahiro
Hoshino, Norihisa
Akutagawa, Tomoyuki
Matsubara, Teruhiko
Sato, Toshinori
Higuchi, Yuji
Ito, Hiroaki
Morita, Masamune
Muraoka, Takahiro
description Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.
doi_str_mv 10.1021/jacs.2c12348
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10037323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780767405</sourcerecordid><originalsourceid>FETCH-LOGICAL-a484t-a9f83c9afe87b8eb77adbcc0bf7974b6a15a02f3d9296fcef4962047e7669aea3</originalsourceid><addsrcrecordid>eNptkc1vEzEQxS0EoqFw44x85MAWf-zauyeESgqVEnGBXq1Z72zr4NjB3o3InT8cRw0FJE6jp_nNm9E8Ql5ydsGZ4G83YPOFsFzIun1EFrwRrGq4UI_JgjEmKt0qeUae5bwpshYtf0rOpGob2TX1gvxchiHawxSzy9XKfUN6g9lZj_TK5exioGscHEw40P5AoahtnyBgtfyxgzC4cEvX0aOdPSS6BnvnAtJlgN5jpjcuzbkoC7tcgOloN8ZEr0Np7SP9gN7tMR2ekycj-IwvTvWcfL1afrn8VK0-f7y-fL-qoG7rqYJubKXtYMRW9y32WsPQW8v6UXe67hXwBpgY5dCJTo0Wx7pTgtUatVIdIMhz8u7edzf3WxwshimBN7vktpAOJoIz_3aCuzO3cW84Y1JLIYvD65NDit9nzJPZumzR-_KSOGcjdMu00jVrCvrmHrUp5pxwfNjDmTkmZ47JmVNyBX_1920P8O-o_qw-Tm3inEJ51f-9fgFVYqV5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780767405</pqid></control><display><type>article</type><title>Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery</title><source>ACS Publications</source><source>MEDLINE</source><creator>Uchida, Noriyuki ; Ryu, Yunosuke ; Takagi, Yuichiro ; Yoshizawa, Ken ; Suzuki, Kotono ; Anraku, Yasutaka ; Ajioka, Itsuki ; Shimokawa, Naofumi ; Takagi, Masahiro ; Hoshino, Norihisa ; Akutagawa, Tomoyuki ; Matsubara, Teruhiko ; Sato, Toshinori ; Higuchi, Yuji ; Ito, Hiroaki ; Morita, Masamune ; Muraoka, Takahiro</creator><creatorcontrib>Uchida, Noriyuki ; Ryu, Yunosuke ; Takagi, Yuichiro ; Yoshizawa, Ken ; Suzuki, Kotono ; Anraku, Yasutaka ; Ajioka, Itsuki ; Shimokawa, Naofumi ; Takagi, Masahiro ; Hoshino, Norihisa ; Akutagawa, Tomoyuki ; Matsubara, Teruhiko ; Sato, Toshinori ; Higuchi, Yuji ; Ito, Hiroaki ; Morita, Masamune ; Muraoka, Takahiro</creatorcontrib><description>Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c12348</identifier><identifier>PMID: 36853954</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological Transport ; Cell Membrane - metabolism ; Endocytosis ; Liposomes - chemistry ; Membrane Proteins - metabolism</subject><ispartof>Journal of the American Chemical Society, 2023-03, Vol.145 (11), p.6210-6220</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a484t-a9f83c9afe87b8eb77adbcc0bf7974b6a15a02f3d9296fcef4962047e7669aea3</citedby><cites>FETCH-LOGICAL-a484t-a9f83c9afe87b8eb77adbcc0bf7974b6a15a02f3d9296fcef4962047e7669aea3</cites><orcidid>0000-0002-9841-6375 ; 0000-0002-8006-4324 ; 0000-0002-0764-1463 ; 0000-0003-3040-1078 ; 0000-0001-8759-3168 ; 0000-0001-6744-048X ; 0000-0001-9597-7030 ; 0000-0003-2848-1013 ; 0000-0002-4429-6101 ; 0000-0003-0219-2467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.2c12348$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.2c12348$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36853954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uchida, Noriyuki</creatorcontrib><creatorcontrib>Ryu, Yunosuke</creatorcontrib><creatorcontrib>Takagi, Yuichiro</creatorcontrib><creatorcontrib>Yoshizawa, Ken</creatorcontrib><creatorcontrib>Suzuki, Kotono</creatorcontrib><creatorcontrib>Anraku, Yasutaka</creatorcontrib><creatorcontrib>Ajioka, Itsuki</creatorcontrib><creatorcontrib>Shimokawa, Naofumi</creatorcontrib><creatorcontrib>Takagi, Masahiro</creatorcontrib><creatorcontrib>Hoshino, Norihisa</creatorcontrib><creatorcontrib>Akutagawa, Tomoyuki</creatorcontrib><creatorcontrib>Matsubara, Teruhiko</creatorcontrib><creatorcontrib>Sato, Toshinori</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ito, Hiroaki</creatorcontrib><creatorcontrib>Morita, Masamune</creatorcontrib><creatorcontrib>Muraoka, Takahiro</creatorcontrib><title>Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.</description><subject>Biological Transport</subject><subject>Cell Membrane - metabolism</subject><subject>Endocytosis</subject><subject>Liposomes - chemistry</subject><subject>Membrane Proteins - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1vEzEQxS0EoqFw44x85MAWf-zauyeESgqVEnGBXq1Z72zr4NjB3o3InT8cRw0FJE6jp_nNm9E8Ql5ydsGZ4G83YPOFsFzIun1EFrwRrGq4UI_JgjEmKt0qeUae5bwpshYtf0rOpGob2TX1gvxchiHawxSzy9XKfUN6g9lZj_TK5exioGscHEw40P5AoahtnyBgtfyxgzC4cEvX0aOdPSS6BnvnAtJlgN5jpjcuzbkoC7tcgOloN8ZEr0Np7SP9gN7tMR2ekycj-IwvTvWcfL1afrn8VK0-f7y-fL-qoG7rqYJubKXtYMRW9y32WsPQW8v6UXe67hXwBpgY5dCJTo0Wx7pTgtUatVIdIMhz8u7edzf3WxwshimBN7vktpAOJoIz_3aCuzO3cW84Y1JLIYvD65NDit9nzJPZumzR-_KSOGcjdMu00jVrCvrmHrUp5pxwfNjDmTkmZ47JmVNyBX_1920P8O-o_qw-Tm3inEJ51f-9fgFVYqV5</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>Uchida, Noriyuki</creator><creator>Ryu, Yunosuke</creator><creator>Takagi, Yuichiro</creator><creator>Yoshizawa, Ken</creator><creator>Suzuki, Kotono</creator><creator>Anraku, Yasutaka</creator><creator>Ajioka, Itsuki</creator><creator>Shimokawa, Naofumi</creator><creator>Takagi, Masahiro</creator><creator>Hoshino, Norihisa</creator><creator>Akutagawa, Tomoyuki</creator><creator>Matsubara, Teruhiko</creator><creator>Sato, Toshinori</creator><creator>Higuchi, Yuji</creator><creator>Ito, Hiroaki</creator><creator>Morita, Masamune</creator><creator>Muraoka, Takahiro</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9841-6375</orcidid><orcidid>https://orcid.org/0000-0002-8006-4324</orcidid><orcidid>https://orcid.org/0000-0002-0764-1463</orcidid><orcidid>https://orcid.org/0000-0003-3040-1078</orcidid><orcidid>https://orcid.org/0000-0001-8759-3168</orcidid><orcidid>https://orcid.org/0000-0001-6744-048X</orcidid><orcidid>https://orcid.org/0000-0001-9597-7030</orcidid><orcidid>https://orcid.org/0000-0003-2848-1013</orcidid><orcidid>https://orcid.org/0000-0002-4429-6101</orcidid><orcidid>https://orcid.org/0000-0003-0219-2467</orcidid></search><sort><creationdate>20230322</creationdate><title>Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery</title><author>Uchida, Noriyuki ; Ryu, Yunosuke ; Takagi, Yuichiro ; Yoshizawa, Ken ; Suzuki, Kotono ; Anraku, Yasutaka ; Ajioka, Itsuki ; Shimokawa, Naofumi ; Takagi, Masahiro ; Hoshino, Norihisa ; Akutagawa, Tomoyuki ; Matsubara, Teruhiko ; Sato, Toshinori ; Higuchi, Yuji ; Ito, Hiroaki ; Morita, Masamune ; Muraoka, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a484t-a9f83c9afe87b8eb77adbcc0bf7974b6a15a02f3d9296fcef4962047e7669aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological Transport</topic><topic>Cell Membrane - metabolism</topic><topic>Endocytosis</topic><topic>Liposomes - chemistry</topic><topic>Membrane Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchida, Noriyuki</creatorcontrib><creatorcontrib>Ryu, Yunosuke</creatorcontrib><creatorcontrib>Takagi, Yuichiro</creatorcontrib><creatorcontrib>Yoshizawa, Ken</creatorcontrib><creatorcontrib>Suzuki, Kotono</creatorcontrib><creatorcontrib>Anraku, Yasutaka</creatorcontrib><creatorcontrib>Ajioka, Itsuki</creatorcontrib><creatorcontrib>Shimokawa, Naofumi</creatorcontrib><creatorcontrib>Takagi, Masahiro</creatorcontrib><creatorcontrib>Hoshino, Norihisa</creatorcontrib><creatorcontrib>Akutagawa, Tomoyuki</creatorcontrib><creatorcontrib>Matsubara, Teruhiko</creatorcontrib><creatorcontrib>Sato, Toshinori</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ito, Hiroaki</creatorcontrib><creatorcontrib>Morita, Masamune</creatorcontrib><creatorcontrib>Muraoka, Takahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchida, Noriyuki</au><au>Ryu, Yunosuke</au><au>Takagi, Yuichiro</au><au>Yoshizawa, Ken</au><au>Suzuki, Kotono</au><au>Anraku, Yasutaka</au><au>Ajioka, Itsuki</au><au>Shimokawa, Naofumi</au><au>Takagi, Masahiro</au><au>Hoshino, Norihisa</au><au>Akutagawa, Tomoyuki</au><au>Matsubara, Teruhiko</au><au>Sato, Toshinori</au><au>Higuchi, Yuji</au><au>Ito, Hiroaki</au><au>Morita, Masamune</au><au>Muraoka, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-03-22</date><risdate>2023</risdate><volume>145</volume><issue>11</issue><spage>6210</spage><epage>6220</epage><pages>6210-6220</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36853954</pmid><doi>10.1021/jacs.2c12348</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9841-6375</orcidid><orcidid>https://orcid.org/0000-0002-8006-4324</orcidid><orcidid>https://orcid.org/0000-0002-0764-1463</orcidid><orcidid>https://orcid.org/0000-0003-3040-1078</orcidid><orcidid>https://orcid.org/0000-0001-8759-3168</orcidid><orcidid>https://orcid.org/0000-0001-6744-048X</orcidid><orcidid>https://orcid.org/0000-0001-9597-7030</orcidid><orcidid>https://orcid.org/0000-0003-2848-1013</orcidid><orcidid>https://orcid.org/0000-0002-4429-6101</orcidid><orcidid>https://orcid.org/0000-0003-0219-2467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-03, Vol.145 (11), p.6210-6220
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10037323
source ACS Publications; MEDLINE
subjects Biological Transport
Cell Membrane - metabolism
Endocytosis
Liposomes - chemistry
Membrane Proteins - metabolism
title Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocytosis-Like%20Vesicle%20Fission%20Mediated%20by%20a%20Membrane-Expanding%20Molecular%20Machine%20Enables%20Virus%20Encapsulation%20for%20In%20Vivo%20Delivery&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Uchida,%20Noriyuki&rft.date=2023-03-22&rft.volume=145&rft.issue=11&rft.spage=6210&rft.epage=6220&rft.pages=6210-6220&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c12348&rft_dat=%3Cproquest_pubme%3E2780767405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780767405&rft_id=info:pmid/36853954&rfr_iscdi=true