Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery
Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substan...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-03, Vol.145 (11), p.6210-6220 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6220 |
---|---|
container_issue | 11 |
container_start_page | 6210 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Uchida, Noriyuki Ryu, Yunosuke Takagi, Yuichiro Yoshizawa, Ken Suzuki, Kotono Anraku, Yasutaka Ajioka, Itsuki Shimokawa, Naofumi Takagi, Masahiro Hoshino, Norihisa Akutagawa, Tomoyuki Matsubara, Teruhiko Sato, Toshinori Higuchi, Yuji Ito, Hiroaki Morita, Masamune Muraoka, Takahiro |
description | Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities. |
doi_str_mv | 10.1021/jacs.2c12348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10037323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780767405</sourcerecordid><originalsourceid>FETCH-LOGICAL-a484t-a9f83c9afe87b8eb77adbcc0bf7974b6a15a02f3d9296fcef4962047e7669aea3</originalsourceid><addsrcrecordid>eNptkc1vEzEQxS0EoqFw44x85MAWf-zauyeESgqVEnGBXq1Z72zr4NjB3o3InT8cRw0FJE6jp_nNm9E8Ql5ydsGZ4G83YPOFsFzIun1EFrwRrGq4UI_JgjEmKt0qeUae5bwpshYtf0rOpGob2TX1gvxchiHawxSzy9XKfUN6g9lZj_TK5exioGscHEw40P5AoahtnyBgtfyxgzC4cEvX0aOdPSS6BnvnAtJlgN5jpjcuzbkoC7tcgOloN8ZEr0Np7SP9gN7tMR2ekycj-IwvTvWcfL1afrn8VK0-f7y-fL-qoG7rqYJubKXtYMRW9y32WsPQW8v6UXe67hXwBpgY5dCJTo0Wx7pTgtUatVIdIMhz8u7edzf3WxwshimBN7vktpAOJoIz_3aCuzO3cW84Y1JLIYvD65NDit9nzJPZumzR-_KSOGcjdMu00jVrCvrmHrUp5pxwfNjDmTkmZ47JmVNyBX_1920P8O-o_qw-Tm3inEJ51f-9fgFVYqV5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780767405</pqid></control><display><type>article</type><title>Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery</title><source>ACS Publications</source><source>MEDLINE</source><creator>Uchida, Noriyuki ; Ryu, Yunosuke ; Takagi, Yuichiro ; Yoshizawa, Ken ; Suzuki, Kotono ; Anraku, Yasutaka ; Ajioka, Itsuki ; Shimokawa, Naofumi ; Takagi, Masahiro ; Hoshino, Norihisa ; Akutagawa, Tomoyuki ; Matsubara, Teruhiko ; Sato, Toshinori ; Higuchi, Yuji ; Ito, Hiroaki ; Morita, Masamune ; Muraoka, Takahiro</creator><creatorcontrib>Uchida, Noriyuki ; Ryu, Yunosuke ; Takagi, Yuichiro ; Yoshizawa, Ken ; Suzuki, Kotono ; Anraku, Yasutaka ; Ajioka, Itsuki ; Shimokawa, Naofumi ; Takagi, Masahiro ; Hoshino, Norihisa ; Akutagawa, Tomoyuki ; Matsubara, Teruhiko ; Sato, Toshinori ; Higuchi, Yuji ; Ito, Hiroaki ; Morita, Masamune ; Muraoka, Takahiro</creatorcontrib><description>Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c12348</identifier><identifier>PMID: 36853954</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological Transport ; Cell Membrane - metabolism ; Endocytosis ; Liposomes - chemistry ; Membrane Proteins - metabolism</subject><ispartof>Journal of the American Chemical Society, 2023-03, Vol.145 (11), p.6210-6220</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a484t-a9f83c9afe87b8eb77adbcc0bf7974b6a15a02f3d9296fcef4962047e7669aea3</citedby><cites>FETCH-LOGICAL-a484t-a9f83c9afe87b8eb77adbcc0bf7974b6a15a02f3d9296fcef4962047e7669aea3</cites><orcidid>0000-0002-9841-6375 ; 0000-0002-8006-4324 ; 0000-0002-0764-1463 ; 0000-0003-3040-1078 ; 0000-0001-8759-3168 ; 0000-0001-6744-048X ; 0000-0001-9597-7030 ; 0000-0003-2848-1013 ; 0000-0002-4429-6101 ; 0000-0003-0219-2467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.2c12348$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.2c12348$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36853954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uchida, Noriyuki</creatorcontrib><creatorcontrib>Ryu, Yunosuke</creatorcontrib><creatorcontrib>Takagi, Yuichiro</creatorcontrib><creatorcontrib>Yoshizawa, Ken</creatorcontrib><creatorcontrib>Suzuki, Kotono</creatorcontrib><creatorcontrib>Anraku, Yasutaka</creatorcontrib><creatorcontrib>Ajioka, Itsuki</creatorcontrib><creatorcontrib>Shimokawa, Naofumi</creatorcontrib><creatorcontrib>Takagi, Masahiro</creatorcontrib><creatorcontrib>Hoshino, Norihisa</creatorcontrib><creatorcontrib>Akutagawa, Tomoyuki</creatorcontrib><creatorcontrib>Matsubara, Teruhiko</creatorcontrib><creatorcontrib>Sato, Toshinori</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ito, Hiroaki</creatorcontrib><creatorcontrib>Morita, Masamune</creatorcontrib><creatorcontrib>Muraoka, Takahiro</creatorcontrib><title>Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.</description><subject>Biological Transport</subject><subject>Cell Membrane - metabolism</subject><subject>Endocytosis</subject><subject>Liposomes - chemistry</subject><subject>Membrane Proteins - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1vEzEQxS0EoqFw44x85MAWf-zauyeESgqVEnGBXq1Z72zr4NjB3o3InT8cRw0FJE6jp_nNm9E8Ql5ydsGZ4G83YPOFsFzIun1EFrwRrGq4UI_JgjEmKt0qeUae5bwpshYtf0rOpGob2TX1gvxchiHawxSzy9XKfUN6g9lZj_TK5exioGscHEw40P5AoahtnyBgtfyxgzC4cEvX0aOdPSS6BnvnAtJlgN5jpjcuzbkoC7tcgOloN8ZEr0Np7SP9gN7tMR2ekycj-IwvTvWcfL1afrn8VK0-f7y-fL-qoG7rqYJubKXtYMRW9y32WsPQW8v6UXe67hXwBpgY5dCJTo0Wx7pTgtUatVIdIMhz8u7edzf3WxwshimBN7vktpAOJoIz_3aCuzO3cW84Y1JLIYvD65NDit9nzJPZumzR-_KSOGcjdMu00jVrCvrmHrUp5pxwfNjDmTkmZ47JmVNyBX_1920P8O-o_qw-Tm3inEJ51f-9fgFVYqV5</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>Uchida, Noriyuki</creator><creator>Ryu, Yunosuke</creator><creator>Takagi, Yuichiro</creator><creator>Yoshizawa, Ken</creator><creator>Suzuki, Kotono</creator><creator>Anraku, Yasutaka</creator><creator>Ajioka, Itsuki</creator><creator>Shimokawa, Naofumi</creator><creator>Takagi, Masahiro</creator><creator>Hoshino, Norihisa</creator><creator>Akutagawa, Tomoyuki</creator><creator>Matsubara, Teruhiko</creator><creator>Sato, Toshinori</creator><creator>Higuchi, Yuji</creator><creator>Ito, Hiroaki</creator><creator>Morita, Masamune</creator><creator>Muraoka, Takahiro</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9841-6375</orcidid><orcidid>https://orcid.org/0000-0002-8006-4324</orcidid><orcidid>https://orcid.org/0000-0002-0764-1463</orcidid><orcidid>https://orcid.org/0000-0003-3040-1078</orcidid><orcidid>https://orcid.org/0000-0001-8759-3168</orcidid><orcidid>https://orcid.org/0000-0001-6744-048X</orcidid><orcidid>https://orcid.org/0000-0001-9597-7030</orcidid><orcidid>https://orcid.org/0000-0003-2848-1013</orcidid><orcidid>https://orcid.org/0000-0002-4429-6101</orcidid><orcidid>https://orcid.org/0000-0003-0219-2467</orcidid></search><sort><creationdate>20230322</creationdate><title>Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery</title><author>Uchida, Noriyuki ; Ryu, Yunosuke ; Takagi, Yuichiro ; Yoshizawa, Ken ; Suzuki, Kotono ; Anraku, Yasutaka ; Ajioka, Itsuki ; Shimokawa, Naofumi ; Takagi, Masahiro ; Hoshino, Norihisa ; Akutagawa, Tomoyuki ; Matsubara, Teruhiko ; Sato, Toshinori ; Higuchi, Yuji ; Ito, Hiroaki ; Morita, Masamune ; Muraoka, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a484t-a9f83c9afe87b8eb77adbcc0bf7974b6a15a02f3d9296fcef4962047e7669aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological Transport</topic><topic>Cell Membrane - metabolism</topic><topic>Endocytosis</topic><topic>Liposomes - chemistry</topic><topic>Membrane Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchida, Noriyuki</creatorcontrib><creatorcontrib>Ryu, Yunosuke</creatorcontrib><creatorcontrib>Takagi, Yuichiro</creatorcontrib><creatorcontrib>Yoshizawa, Ken</creatorcontrib><creatorcontrib>Suzuki, Kotono</creatorcontrib><creatorcontrib>Anraku, Yasutaka</creatorcontrib><creatorcontrib>Ajioka, Itsuki</creatorcontrib><creatorcontrib>Shimokawa, Naofumi</creatorcontrib><creatorcontrib>Takagi, Masahiro</creatorcontrib><creatorcontrib>Hoshino, Norihisa</creatorcontrib><creatorcontrib>Akutagawa, Tomoyuki</creatorcontrib><creatorcontrib>Matsubara, Teruhiko</creatorcontrib><creatorcontrib>Sato, Toshinori</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ito, Hiroaki</creatorcontrib><creatorcontrib>Morita, Masamune</creatorcontrib><creatorcontrib>Muraoka, Takahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchida, Noriyuki</au><au>Ryu, Yunosuke</au><au>Takagi, Yuichiro</au><au>Yoshizawa, Ken</au><au>Suzuki, Kotono</au><au>Anraku, Yasutaka</au><au>Ajioka, Itsuki</au><au>Shimokawa, Naofumi</au><au>Takagi, Masahiro</au><au>Hoshino, Norihisa</au><au>Akutagawa, Tomoyuki</au><au>Matsubara, Teruhiko</au><au>Sato, Toshinori</au><au>Higuchi, Yuji</au><au>Ito, Hiroaki</au><au>Morita, Masamune</au><au>Muraoka, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-03-22</date><risdate>2023</risdate><volume>145</volume><issue>11</issue><spage>6210</spage><epage>6220</epage><pages>6210-6220</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36853954</pmid><doi>10.1021/jacs.2c12348</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9841-6375</orcidid><orcidid>https://orcid.org/0000-0002-8006-4324</orcidid><orcidid>https://orcid.org/0000-0002-0764-1463</orcidid><orcidid>https://orcid.org/0000-0003-3040-1078</orcidid><orcidid>https://orcid.org/0000-0001-8759-3168</orcidid><orcidid>https://orcid.org/0000-0001-6744-048X</orcidid><orcidid>https://orcid.org/0000-0001-9597-7030</orcidid><orcidid>https://orcid.org/0000-0003-2848-1013</orcidid><orcidid>https://orcid.org/0000-0002-4429-6101</orcidid><orcidid>https://orcid.org/0000-0003-0219-2467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-03, Vol.145 (11), p.6210-6220 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10037323 |
source | ACS Publications; MEDLINE |
subjects | Biological Transport Cell Membrane - metabolism Endocytosis Liposomes - chemistry Membrane Proteins - metabolism |
title | Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocytosis-Like%20Vesicle%20Fission%20Mediated%20by%20a%20Membrane-Expanding%20Molecular%20Machine%20Enables%20Virus%20Encapsulation%20for%20In%20Vivo%20Delivery&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Uchida,%20Noriyuki&rft.date=2023-03-22&rft.volume=145&rft.issue=11&rft.spage=6210&rft.epage=6220&rft.pages=6210-6220&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c12348&rft_dat=%3Cproquest_pubme%3E2780767405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780767405&rft_id=info:pmid/36853954&rfr_iscdi=true |