O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow

The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-03, Vol.9 (12), p.eadd4210-eadd4210
Hauptverfasser: Kim, Hye-Seon, Ha, Hyun-Su, Kim, Dae-Hyun, Son, Deok Hyeon, Baek, Sewoom, Park, Jeongeun, Lee, Chan Hee, Park, Suji, Yoon, Hyo-Jin, Yu, Seung Eun, Kang, Jeon Il, Park, Kyung Min, Shin, Young Min, Lee, Jung Bok, Sung, Hak-Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eadd4210
container_issue 12
container_start_page eadd4210
container_title Science advances
container_volume 9
creator Kim, Hye-Seon
Ha, Hyun-Su
Kim, Dae-Hyun
Son, Deok Hyeon
Baek, Sewoom
Park, Jeongeun
Lee, Chan Hee
Park, Suji
Yoon, Hyo-Jin
Yu, Seung Eun
Kang, Jeon Il
Park, Kyung Min
Shin, Young Min
Lee, Jung Bok
Sung, Hak-Joon
description The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism–driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment. The transition O2 level promoted chondro-to-osteogenesis, thereby providing skeletogenic insight from the hypoxic bone marrow.
doi_str_mv 10.1126/sciadv.add4210
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10032601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790052317</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-b534bad001f99924267725e2d0763f1e833e825b0085e52b76fca19d76d5571c3</originalsourceid><addsrcrecordid>eNpVjs1LwzAchoMgOOaunnP00pmPJmlPIsMvGAxBzyFNft2ibVOTdOp_b8FdPL0vPPDwIHRFyZpSJm-S9cYd18a5klFyhhaMK1EwUVYXaJXSOyGEllIKWi_Qy47ho4neDBnbgx9xDjj5fupMhvlkKNII1rfe4vQBHeSwhwGST7iNoceHnzF8z6wJA-DexBi-LtF5a7oEq9Mu0dvD_evmqdjuHp83d9tipKrMRSN42Rg3p7R1XbOSSaWYAOaIkrylUHEOFRMNIZUAwRolW2to7ZR0Qihq-RLd_nnHqenBWRhyNJ0eo587fnQwXv8ngz_ofThqSghnktDZcH0yxPA5Qcq698lC15kBwpQ0UzUhgnGq-C9PqWps</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790052317</pqid></control><display><type>article</type><title>O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, Hye-Seon ; Ha, Hyun-Su ; Kim, Dae-Hyun ; Son, Deok Hyeon ; Baek, Sewoom ; Park, Jeongeun ; Lee, Chan Hee ; Park, Suji ; Yoon, Hyo-Jin ; Yu, Seung Eun ; Kang, Jeon Il ; Park, Kyung Min ; Shin, Young Min ; Lee, Jung Bok ; Sung, Hak-Joon</creator><creatorcontrib>Kim, Hye-Seon ; Ha, Hyun-Su ; Kim, Dae-Hyun ; Son, Deok Hyeon ; Baek, Sewoom ; Park, Jeongeun ; Lee, Chan Hee ; Park, Suji ; Yoon, Hyo-Jin ; Yu, Seung Eun ; Kang, Jeon Il ; Park, Kyung Min ; Shin, Young Min ; Lee, Jung Bok ; Sung, Hak-Joon</creatorcontrib><description>The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism–driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment. The transition O2 level promoted chondro-to-osteogenesis, thereby providing skeletogenic insight from the hypoxic bone marrow.</description><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.add4210</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; Biomedicine and Life Sciences ; Engineering ; SciAdv r-articles</subject><ispartof>Science advances, 2023-03, Vol.9 (12), p.eadd4210-eadd4210</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032601/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032601/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27902,27903,53768,53770</link.rule.ids></links><search><creatorcontrib>Kim, Hye-Seon</creatorcontrib><creatorcontrib>Ha, Hyun-Su</creatorcontrib><creatorcontrib>Kim, Dae-Hyun</creatorcontrib><creatorcontrib>Son, Deok Hyeon</creatorcontrib><creatorcontrib>Baek, Sewoom</creatorcontrib><creatorcontrib>Park, Jeongeun</creatorcontrib><creatorcontrib>Lee, Chan Hee</creatorcontrib><creatorcontrib>Park, Suji</creatorcontrib><creatorcontrib>Yoon, Hyo-Jin</creatorcontrib><creatorcontrib>Yu, Seung Eun</creatorcontrib><creatorcontrib>Kang, Jeon Il</creatorcontrib><creatorcontrib>Park, Kyung Min</creatorcontrib><creatorcontrib>Shin, Young Min</creatorcontrib><creatorcontrib>Lee, Jung Bok</creatorcontrib><creatorcontrib>Sung, Hak-Joon</creatorcontrib><title>O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow</title><title>Science advances</title><description>The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism–driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment. The transition O2 level promoted chondro-to-osteogenesis, thereby providing skeletogenic insight from the hypoxic bone marrow.</description><subject>Applied Sciences and Engineering</subject><subject>Biomedicine and Life Sciences</subject><subject>Engineering</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVjs1LwzAchoMgOOaunnP00pmPJmlPIsMvGAxBzyFNft2ibVOTdOp_b8FdPL0vPPDwIHRFyZpSJm-S9cYd18a5klFyhhaMK1EwUVYXaJXSOyGEllIKWi_Qy47ho4neDBnbgx9xDjj5fupMhvlkKNII1rfe4vQBHeSwhwGST7iNoceHnzF8z6wJA-DexBi-LtF5a7oEq9Mu0dvD_evmqdjuHp83d9tipKrMRSN42Rg3p7R1XbOSSaWYAOaIkrylUHEOFRMNIZUAwRolW2to7ZR0Qihq-RLd_nnHqenBWRhyNJ0eo587fnQwXv8ngz_ofThqSghnktDZcH0yxPA5Qcq698lC15kBwpQ0UzUhgnGq-C9PqWps</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>Kim, Hye-Seon</creator><creator>Ha, Hyun-Su</creator><creator>Kim, Dae-Hyun</creator><creator>Son, Deok Hyeon</creator><creator>Baek, Sewoom</creator><creator>Park, Jeongeun</creator><creator>Lee, Chan Hee</creator><creator>Park, Suji</creator><creator>Yoon, Hyo-Jin</creator><creator>Yu, Seung Eun</creator><creator>Kang, Jeon Il</creator><creator>Park, Kyung Min</creator><creator>Shin, Young Min</creator><creator>Lee, Jung Bok</creator><creator>Sung, Hak-Joon</creator><general>American Association for the Advancement of Science</general><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230322</creationdate><title>O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow</title><author>Kim, Hye-Seon ; Ha, Hyun-Su ; Kim, Dae-Hyun ; Son, Deok Hyeon ; Baek, Sewoom ; Park, Jeongeun ; Lee, Chan Hee ; Park, Suji ; Yoon, Hyo-Jin ; Yu, Seung Eun ; Kang, Jeon Il ; Park, Kyung Min ; Shin, Young Min ; Lee, Jung Bok ; Sung, Hak-Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-b534bad001f99924267725e2d0763f1e833e825b0085e52b76fca19d76d5571c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied Sciences and Engineering</topic><topic>Biomedicine and Life Sciences</topic><topic>Engineering</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hye-Seon</creatorcontrib><creatorcontrib>Ha, Hyun-Su</creatorcontrib><creatorcontrib>Kim, Dae-Hyun</creatorcontrib><creatorcontrib>Son, Deok Hyeon</creatorcontrib><creatorcontrib>Baek, Sewoom</creatorcontrib><creatorcontrib>Park, Jeongeun</creatorcontrib><creatorcontrib>Lee, Chan Hee</creatorcontrib><creatorcontrib>Park, Suji</creatorcontrib><creatorcontrib>Yoon, Hyo-Jin</creatorcontrib><creatorcontrib>Yu, Seung Eun</creatorcontrib><creatorcontrib>Kang, Jeon Il</creatorcontrib><creatorcontrib>Park, Kyung Min</creatorcontrib><creatorcontrib>Shin, Young Min</creatorcontrib><creatorcontrib>Lee, Jung Bok</creatorcontrib><creatorcontrib>Sung, Hak-Joon</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hye-Seon</au><au>Ha, Hyun-Su</au><au>Kim, Dae-Hyun</au><au>Son, Deok Hyeon</au><au>Baek, Sewoom</au><au>Park, Jeongeun</au><au>Lee, Chan Hee</au><au>Park, Suji</au><au>Yoon, Hyo-Jin</au><au>Yu, Seung Eun</au><au>Kang, Jeon Il</au><au>Park, Kyung Min</au><au>Shin, Young Min</au><au>Lee, Jung Bok</au><au>Sung, Hak-Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow</atitle><jtitle>Science advances</jtitle><date>2023-03-22</date><risdate>2023</risdate><volume>9</volume><issue>12</issue><spage>eadd4210</spage><epage>eadd4210</epage><pages>eadd4210-eadd4210</pages><eissn>2375-2548</eissn><abstract>The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism–driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment. The transition O2 level promoted chondro-to-osteogenesis, thereby providing skeletogenic insight from the hypoxic bone marrow.</abstract><pub>American Association for the Advancement of Science</pub><doi>10.1126/sciadv.add4210</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2375-2548
ispartof Science advances, 2023-03, Vol.9 (12), p.eadd4210-eadd4210
issn 2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10032601
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Applied Sciences and Engineering
Biomedicine and Life Sciences
Engineering
SciAdv r-articles
title O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O2%20variant%20chip%20to%20simulate%20site-specific%20skeletogenesis%20from%20hypoxic%20bone%20marrow&rft.jtitle=Science%20advances&rft.au=Kim,%20Hye-Seon&rft.date=2023-03-22&rft.volume=9&rft.issue=12&rft.spage=eadd4210&rft.epage=eadd4210&rft.pages=eadd4210-eadd4210&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.add4210&rft_dat=%3Cproquest_pubme%3E2790052317%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790052317&rft_id=info:pmid/&rfr_iscdi=true